リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of key yeast species and microbe–microbe interactions impacting larval growth of Drosophila in the wild」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of key yeast species and microbe–microbe interactions impacting larval growth of Drosophila in the wild

Mure, Ayumi Sugiura, Yuki Maeda, Rae Honda, Kohei Sakurai, Nozomu Takahashi, Yuuki Watada, Masayoshi Katoh, Toshihiko Gotoh, Aina Gotoh, Yasuhiro Taniguchi, Itsuki Nakamura, Keiji Hayashi, Tetsuya Katayama, Takane Uemura, Tadashi Hattori, Yukako 京都大学 DOI:10.7554/eLife.90148.3

2023.12.27

概要

Microbiota consisting of various fungi and bacteria have a significant impact on the physiological functions of the host. However, it is unclear which species are essential to this impact and how they affect the host. This study analyzed and isolated microbes from natural food sources of Drosophila larvae, and investigated their functions. Hanseniaspora uvarum is the predominant yeast responsible for larval growth in the earlier stage of fermentation. As fermentation progresses, Acetobacter orientalis emerges as the key bacterium responsible for larval growth, although yeasts and lactic acid bacteria must coexist along with the bacterium to stabilize this host–bacterial association. By providing nutrients to the larvae in an accessible form, the microbiota contributes to the upregulation of various genes that function in larval cell growth and metabolism. Thus, this study elucidates the key microbial species that support animal growth under microbial transition.

この論文で使われている画像

参考文献

Anagnostou C, Dorsch M, Rohlfs M. 2010. Influence of dietary yeasts on Drosophila melanogaster life‐history

traits. Entomologia Experimentalis et Applicata 136:1–11. DOI: https://doi.org/10.1111/j.1570-7458.2010.​

00997.x

Asha H, Nagy I, Kovacs G, Stetson D, Ando I, Dearolf CR. 2003. Analysis of Ras-­induced overproliferation in

Drosophila hemocytes. Genetics 163:203–215. DOI: https://doi.org/10.1093/genetics/163.1.203, PMID:

12586708

Baumberger JP. 1917. The Food of Drosophila melanogaster Meigen. PNAS 3:122–126. DOI: https://doi.org/10.​

1073/pnas.3.2.122, PMID: 16586694

Broderick NA, Lemaitre B. 2012. Gut-­associated microbes of Drosophila melanogaster. Gut Microbes 3:307–

321. DOI: https://doi.org/10.4161/gmic.19896, PMID: 22572876

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK,

Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD,

Pirrung M, Reeder J, et al. 2010. QIIME allows analysis of high-­throughput community sequencing data. Nature

Methods 7:335–336. DOI: https://doi.org/10.1038/nmeth.f.303, PMID: 20383131

Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila

species: ecological context of a host-­microbe model system. PLOS Genetics 7:e1002272. DOI: https://doi.org/​

10.1371/journal.pgen.1002272, PMID: 21966276

Chandler JA, Eisen JA, Kopp A. 2012. Yeast communities of diverse Drosophila species: comparison of two

symbiont groups in the same hosts. Applied and Environmental Microbiology 78:7327–7336. DOI: https://doi.​

org/10.1128/AEM.01741-12, PMID: 22885750

Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-­Alfaro A, Kuske CR, Tiedje JM. 2014.

Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research

42:D633–D642. DOI: https://doi.org/10.1093/nar/gkt1244

Coluccio AE, Rodriguez RK, Kernan MJ, Neiman AM. 2008. The yeast spore wall enables spores to survive

passage through the digestive tract of Drosophila. PLOS ONE 3:e2873. DOI: https://doi.org/10.1371/journal.​

pone.0002873, PMID: 18682732

Consuegra J, Grenier T, Akherraz H, Rahioui I, Gervais H, da Silva P, Leulier F. 2020a. Metabolic cooperation

among commensal bacteria supports Drosophila juvenile growth under nutritional stress. iScience 23:101232.

DOI: https://doi.org/10.1016/j.isci.2020.101232, PMID: 32563155

Consuegra J, Grenier T, Baa-­Puyoulet P, Rahioui I, Akherraz H, Gervais H, Parisot N, da Silva P, Charles H,

Calevro F, Leulier F. 2020b. Drosophila-­associated bacteria differentially shape the nutritional requirements of

their host during juvenile growth. PLOS Biology 18:e3000681. DOI: https://doi.org/10.1371/journal.pbio.​

3000681, PMID: 32196485

Corby-­Harris V, Pontaroli AC, Shimkets LJ, Bennetzen JL, Habel KE, Promislow DEL. 2007. Geographical

distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Applied

and Environmental Microbiology 73:3470–3479. DOI: https://doi.org/10.1128/AEM.02120-06, PMID: 17400769

Cox CR, Gilmore MS. 2007. Native microbial colonization of Drosophila melanogaster and its use as a model of

Enterococcus faecalis pathogenesis. Infection and Immunity 75:1565–1576. DOI: https://doi.org/10.1128/IAI.​

01496-06, PMID: 17220307

De Coster W, D’Hert S, Schultz DT, Cruts M, Broeckhoven C. 2018. NanoPack: visualizing and processing

long-­read sequencing data. Bioinformatics 34:2666–2669. DOI: https://doi.org/10.1093/bioinformatics/bty149

Dodge R, Jones EW, Zhu H, Obadia B, Martinez DJ, Wang C, Aranda-­Díaz A, Aumiller K, Liu Z, Voltolini M,

Brodie EL, Huang KC, Carlson JM, Sivak DA, Spradling AC, Ludington WB. 2023. A symbiotic physical niche in

Drosophila melanogaster regulates stable association of A multi-­species gut microbiota. Nature

Communications 14:36942. DOI: https://doi.org/10.1038/s41467-023-36942-x

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

26 of 32

Developmental Biology | Microbiology and Infectious Disease

Research article

Fox HL, Pham PT, Kimball SR, Jefferson LS, Lynch CJ. 1998. Amino acid effects on translational repressor 4E-­BP1

are mediated primarily by L-­leucine in isolated adipocytes. The American Journal of Physiology 275:C1232–

C1238. DOI: https://doi.org/10.1152/ajpcell.1998.275.5.C1232, PMID: 9814971

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-­HIT: accelerated for clustering the next-­generation sequencing data.

Bioinformatics 28:3150–3152. DOI: https://doi.org/10.1093/bioinformatics/bts565

Gallo M, Vento JM, Joncour P, Quagliariello A, Maritan E, Silva-­Soares NF, Battistolli M, Beisel CL, Martino ME.

2022. Beneficial commensal bacteria promote Drosophila growth by downregulating the expression of

peptidoglycan recognition proteins. iScience 25:104357. DOI: https://doi.org/10.1016/j.isci.2022.104357,

PMID: 35601912

Grenier T, Leulier F. 2020. How commensal microbes shape the physiology of Drosophila melanogaster. Current

Opinion in Insect Science 41:92–99. DOI: https://doi.org/10.1016/j.cois.2020.08.002, PMID: 32836177

Gu X, Jouandin P, Lalgudi PV, Binari R, Valenstein ML, Reid MA, Allen AE, Kamitaki N, Locasale JW, Perrimon N,

Sabatini DM. 2022. Author Correction: Sestrin mediates detection of and adaptation to low-­leucine diets in

Drosophila. Nature 609:E11. DOI: https://doi.org/10.1038/s41586-022-05286-9, PMID: 36100671

Hallen-­Adams HE, Suhr MJ. 2017. Fungi in the healthy human gastrointestinal tract. Virulence 8:352–358. DOI:

https://doi.org/10.1080/21505594.2016.1247140, PMID: 27736307

Henriques SF, Dhakan DB, Serra L, Francisco AP, Carvalho-­Santos Z, Baltazar C, Elias AP, Anjos M, Zhang T,

Maddocks ODK, Ribeiro C. 2020. Metabolic cross-­feeding in imbalanced diets allows gut microbes to improve

reproduction and alter host behaviour. Nature Communications 11:4236. DOI: https://doi.org/10.1038/​

s41467-020-18049-9, PMID: 32843654

Hoang D, Kopp A, Chandler JA. 2015. Interactions between Drosophila and its natural yeast symbionts-­Is

Saccharomyces cerevisiae a good model for studying the fly-­yeast relationship? PeerJ 3:e1116. DOI: https://​

doi.org/10.7717/peerj.1116, PMID: 26336636

Hoshino Y, Gaucher EA. 2021. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis.

PNAS 118:e2101276118. DOI: https://doi.org/10.1073/pnas.2101276118

Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID

bioinformatics resources. Nature Protocols 4:44–57. DOI: https://doi.org/10.1038/nprot.2008.211

Hugerth LW, Wefer HA, Lundin S, Jakobsson HE, Lindberg M, Rodin S, Engstrand L, Andersson AF. 2014.

DegePrime, a program for degenerate primer design for broad-­taxonomic-­range PCR in microbial ecology

studies. Applied and Environmental Microbiology 80:5116–5123. DOI: https://doi.org/10.1128/AEM.01403-14,

PMID: 24928874

Iida T, Kobayashi T. 2019. RNA polymerase i activators count and adjust ribosomal RNA gene copy number.

Molecular Cell 73:645–654.. DOI: https://doi.org/10.1016/j.molcel.2018.11.029, PMID: 30612878

Ikeda-­Ohtsubo W, Brugman S, Warden CH, Rebel JMJ, Folkerts G, Pieterse CMJ. 2018. How can we define

“optimal microbiota?”: a comparative review of structure and functions of microbiota of animals, fish, and

plants in agriculture. Frontiers in Nutrition 5:90. DOI: https://doi.org/10.3389/fnut.2018.00090

Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: A better web

interface. Nucleic Acids Research 36:W5–W9. DOI: https://doi.org/10.1093/nar/gkn201, PMID: 18440982

Kajitani R, Yoshimura D, Okuno M, Minakuchi Y, Kagoshima H, Fujiyama A, Kubokawa K, Kohara Y, Toyoda A,

Itoh T. 2019. Platanus-­allee is a de novo haplotype assembler enabling a comprehensive access to divergent

heterozygous regions. Nature Communications 10:1702. DOI: https://doi.org/10.1038/s41467-019-09575-2,

PMID: 30979905

Kanaoka Y, Onodera K, Watanabe K, Hayashi Y, Usui T, Uemura T, Hattori Y. 2023. Inter-­organ Wingless/Ror/Akt

signaling regulates nutrient-­dependent hyperarborization of somatosensory neurons. eLife 12:e79461. DOI:

https://doi.org/10.7554/eLife.79461, PMID: 36647607

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature

Methods 12:357–360. DOI: https://doi.org/10.1038/nmeth.3317, PMID: 25751142

Kim J, Guan KL. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology

21:63–71. DOI: https://doi.org/10.1038/s41556-018-0205-1

Kim B, Kanai MI, Oh Y, Kyung M, Kim EK, Jang IH, Lee JH, Kim SG, Suh GSB, Lee WJ. 2021. Response of the

microbiome-­gut-­brain axis in Drosophila to amino acid deficit. Nature 593:570–574. DOI: https://doi.org/10.​

1038/s41586-021-03522-2, PMID: 33953396

Kwong WK, Moran NA. 2013. Cultivation and characterization of the gut symbionts of honey bees and bumble

bees: description of snodgrassella alvi gen. International Journal of Systematic and Evolutionary Microbiology

63:2008–2018. DOI: https://doi.org/10.1099/ijs.0.044875-0, PMID: 23041637

Lee WJ, Brey PT. 2013. How microbiomes influence metazoan development: insights from history and Drosophila

modeling of gut-­microbe interactions. Annual Review of Cell and Developmental Biology 29:571–592. DOI:

https://doi.org/10.1146/annurev-cellbio-101512-122333, PMID: 23808845

Li W, Godzik A. 2006. Cd-­hit: A fast program for clustering and comparing large sets of protein or nucleotide

sequences. Bioinformatics 22:1658–1659. DOI: https://doi.org/10.1093/bioinformatics/btl158

Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG. 2019. Genome-­based estimates of fungal

rDNA copy number variation across phylogenetic scales and ecological lifestyles. Molecular Ecology 28:721–

730. DOI: https://doi.org/10.1111/mec.14995, PMID: 30582650

Ludington WB, Ja WW. 2020. Drosophila as a model for the gut microbiome. PLOS Pathogens 16:e1008398.

DOI: https://doi.org/10.1371/journal.ppat.1008398, PMID: 32324814

Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies.

Bioinformatics 27:2957–2963. DOI: https://doi.org/10.1093/bioinformatics/btr507, PMID: 21903629

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

27 of 32

Developmental Biology | Microbiology and Infectious Disease

Research article

Martino ME, Joncour P, Leenay R, Gervais H, Shah M, Hughes S, Gillet B, Beisel C, Leulier F. 2018. Bacterial

adaptation to the host’s diet is a key evolutionary force shaping Drosophila-­lactobacillus symbiosis. Cell Host &

Microbe 24:109–119.. DOI: https://doi.org/10.1016/j.chom.2018.06.001

Min B, Grigoriev IV, Choi IG. 2017. FunGAP: fungal genome annotation pipeline using evidence-­based gene

model evaluation. Bioinformatics 33:2936–2937. DOI: https://doi.org/10.1093/bioinformatics/btx353, PMID:

28582481

Moya A, Ferrer M. 2016. Functional redundancy-­induced stability of gut microbiota subjected to disturbance.

Trends in Microbiology 24:402–413. DOI: https://doi.org/10.1016/j.tim.2016.02.002, PMID: 26996765

Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-­Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K,

Glöckner FO, Tedersoo L, Saar I, Kõljalg U, Abarenkov K. 2019. The UNITE database for molecular

identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research

47:D259–D264. DOI: https://doi.org/10.1093/nar/gky1022, PMID: 30371820

Niwa R, Namiki T, Ito K, Shimada-­Niwa Y, Kiuchi M, Kawaoka S, Kayukawa T, Banno Y, Fujimoto Y, Shigenobu S,

Kobayashi S, Shimada T, Katsuma S, Shinoda T. 2010. Non-­molting glossy/shroud encodes a short-­chain

dehydrogenase/reductase that functions in the “Black Box” of the ecdysteroid biosynthesis pathway.

Development 137:1991–1999. DOI: https://doi.org/10.1242/dev.045641, PMID: 20501590

Ohtsubo Y, Ikeda-­Ohtsubo W, Nagata Y, Tsuda M. 2008. GenomeMatcher: a graphical user interface for DNA

sequence comparison. BMC Bioinformatics 9:376. DOI: https://doi.org/10.1186/1471-2105-9-376, PMID:

18793444

Oka M, Hashimoto K, Yamaguchi Y, Saitoh S-­I, Sugiura Y, Motoi Y, Honda K, Kikko Y, Ohata S, Suematsu M,

Miura M, Miyake K, Katada T, Kontani K. 2017. Arl8b is required for lysosomal degradation of maternal proteins

in the visceral yolk sac endoderm of mouse embryos. Journal of Cell Science 130:3568–3577. DOI: https://doi.​

org/10.1242/jcs.200519, PMID: 28827407

O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-­White B,

Ako-­Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O,

Farrell CM, et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion,

and functional annotation. Nucleic Acids Research 44:D733–D745. DOI: https://doi.org/10.1093/nar/gkv1189,

PMID: 26553804

Oyewole O. 2012. Microorganisms associated with deterioration of stored banana fruits. Frontiers in Science

2:86–91. DOI: https://doi.org/10.5923/j.fs.20120205.01

Pais IS, Valente RS, Sporniak M, Teixeira L. 2018. Drosophila melanogaster establishes a species-­specific

mutualistic interaction with stable gut-­colonizing bacteria. PLOS Biology 16:e2005710. DOI: https://doi.org/10.​

1371/journal.pbio.2005710, PMID: 29975680

Pang Z, Chong J, Li S, Xia J. 2020. MetaboAnalystR 3.0: toward an optimized workflow for global metabolomics.

Metabolites 10:186. DOI: https://doi.org/10.3390/metabo10050186, PMID: 32392884

Pérez JC. 2021. Fungi of the human gut microbiota: roles and significance. International Journal of Medical

Microbiology 311:151490. DOI: https://doi.org/10.1016/j.ijmm.2021.151490, PMID: 33676239

Piper MDW, Blanc E, Leitão-­Gonçalves R, Yang M, He X, Linford NJ, Hoddinott MP, Hopfen C, Soultoukis GA,

Niemeyer C, Kerr F, Pletcher SD, Ribeiro C, Partridge L. 2014. A holidic medium for Drosophila melanogaster.

Nature Methods 11:100–105. DOI: https://doi.org/10.1038/nmeth.2731, PMID: 24240321

Piper MDW, Soultoukis GA, Blanc E, Mesaros A, Herbert SL, Juricic P, He X, Atanassov I, Salmonowicz H,

Yang M, Simpson SJ, Ribeiro C, Partridge L. 2017. Matching dietary amino acid balance to the in silico-­

translated exome optimizes growth and reproduction without cost to lifespan. Cell Metabolism 25:1206. DOI:

https://doi.org/10.1016/j.cmet.2017.04.020, PMID: 28467937

Qiu X, Yu L, Wang W, Yan R, Zhang Z, Yang H, Zhu D, Zhu B. 2021. Comparative evaluation of microbiota

dynamics and metabolites correlation between spontaneous and inoculated fermentations of nanfeng

tangerine wine. Frontiers in Microbiology 12:649978. DOI: https://doi.org/10.3389/fmicb.2021.649978, PMID:

34046021

Quan AS, Eisen MB. 2018. The ecology of the Drosophila-­yeast mutualism in wineries. PLOS ONE 13:e0196440.

DOI: https://doi.org/10.1371/journal.pone.0196440, PMID: 29768432

Rakowska R, Sadowska A, Dybkowska E, Świderski F. 2017. Spent yeast as natural source of functional food

additives. Roczniki Panstwowego Zakladu Higieny 68:115–121 PMID: 28646828.

R Development Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria. R

Foundation for Statistical Computing. https://www.R-project.org/

Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. 2022. DAVID: A web server for

functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Research

50:W216–W221. DOI: https://doi.org/10.1093/nar/gkac194, PMID: 35325185

Shigenobu S, Wilson ACC. 2011. Genomic revelations of a mutualism: the pea aphid and its obligate bacterial

symbiont. Cellular and Molecular Life Sciences 68:1297–1309. DOI: https://doi.org/10.1007/s00018-011-0645-​

2, PMID: 21390549

Shihata AM, Mrak EM. 1952. Intestinal yeast floras of successive populations of Drosophila. Evolution 6:325.

DOI: https://doi.org/10.2307/2405417

Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ. 2011. Drosophila microbiome

modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674. DOI:

https://doi.org/10.1126/science.1212782, PMID: 22053049

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

28 of 32

Developmental Biology | Microbiology and Infectious Disease

Research article

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly

and annotation completeness with single-­copy orthologs. Bioinformatics 31:3210–3212. DOI: https://doi.org/​

10.1093/bioinformatics/btv351, PMID: 26059717

Solomon GM, Dodangoda H, McCarthy-­Walker TT, Ntim-­Gyakari RR, Newell PD. 2019. The microbiota of

Drosophila suzukii influences the larval development of Drosophila melanogaster. PeerJ 7:e8097. DOI: https://​

doi.org/10.7717/peerj.8097

Stamps JA, Yang LH, Morales VM, Boundy-­Mills KL. 2012. Drosophila regulate yeast density and increase yeast

community similarity in a natural substrate. PLOS ONE 7:e42238. DOI: https://doi.org/10.1371/journal.pone.​

0042238, PMID: 22860093

Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. 2015. rrnDB: improved tools for interpreting rRNA

gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Research

43:D593–D598. DOI: https://doi.org/10.1093/nar/gku1201, PMID: 25414355

Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. 2011. Lactobacillus plantarum promotes Drosophila

systemic growth by modulating hormonal signals through TOR-­dependent nutrient sensing. Cell Metabolism

14:403–414. DOI: https://doi.org/10.1016/j.cmet.2011.07.012, PMID: 21907145

Su Y, Lin HC, Teh LS, Chevance F, James I, Mayfield C, Golic KG, Gagnon JA, Rog O, Dale C. 2022. Rational

engineering of a synthetic insect-­bacterial mutualism. Current Biology 32:3925–3938.. DOI: https://doi.org/10.​

1016/j.cub.2022.07.036, PMID: 35963240

Vurture GW, Sedlazeck FJ, Nattestad M, Underwood CJ, Fang H, Gurtowski J, Schatz MC. 2017. GenomeScope:

fast reference-­free genome profiling from short reads. Bioinformatics 33:2202–2204. DOI: https://doi.org/10.​

1093/bioinformatics/btx153, PMID: 28369201

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A,

Moeller S, Schwartz M, Venables B. 2022. Gplots: various R programming tools for plotting data. CRAN.

https://CRAN.R-project.org/package=gplots

Watanabe K, Furumizo Y, Usui T, Hattori Y, Uemura T. 2017. Nutrient-­dependent increased dendritic arborization

of somatosensory neurons. Genes to Cells 22:105–114. DOI: https://doi.org/10.1111/gtc.12451, PMID:

27868313

Watanabe K, Kanaoka Y, Mizutani S, Uchiyama H, Yajima S, Watada M, Uemura T, Hattori Y. 2019. Interspecies

comparative analyses reveal distinct carbohydrate-­responsive systems among Drosophila species. Cell Reports

28:2594–2607.. DOI: https://doi.org/10.1016/j.celrep.2019.08.030, PMID: 31484071

Werren JH, Windsor D, Guo L. 1995. Distribution of wolbachia among neotropical arthropods. Proceedings:

Biological Sciences 262:197–204. DOI: https://doi.org/10.1098/rspb.1995.0196

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for

phylogenetics. PCR Protocols: A Guide to Methods and Applications 18:315–322.

Wick R. 2018. Porechop. 109e437. GitHub. https://github.com/rrwick/Porechop

Zhang S, Lin X, Hou Q, Hu Z, Wang Y, Wang Z. 2021. Regulation of mTORC1 by amino acids in mammalian cells:

a general picture of recent advances. Animal Nutrition 7:1009–1023. DOI: https://doi.org/10.1016/j.aninu.​

2021.05.003, PMID: 34738031

Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and immunity in health and disease. Cell

Research 30:492–506. DOI: https://doi.org/10.1038/s41422-020-0332-7, PMID: 32433595

Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The MaSuRCA genome assembler.

Bioinformatics 29:2669–2677. DOI: https://doi.org/10.1093/bioinformatics/btt476, PMID: 23990416

Zinke I, Schütz CS, Katzenberger JD, Bauer M, Pankratz MJ. 2002. Nutrient control of gene expression in

Drosophila: microarray analysis of starvation and sugar-­dependent response. The EMBO Journal 21:6162–

6173. DOI: https://doi.org/10.1093/emboj/cdf600, PMID: 12426388

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

29 of 32

Developmental Biology | Microbiology and Infectious Disease

Research article

Appendix 1

Appendix 1—key resources table

Reagent type

(species) or resource

Designation

Source or reference

Identifiers

Genetic reagent

(Drosophila

melanogaster)

Canton-­Special

EHIME-­Fly Drosophila Stocks of Ehime

University

E-­10002

Genetic reagent (D.

melanogaster)

Cg-­GAL4

Asha et al., 2003 (doi: 10.1093/

genetics/163.1.203)

Strain, strain

background

(Saccharomyces

cerevisiae)

BY4741

NBRP-­Yeast

Strain, strain

background

(Lactiplantibacillus

plantarum)

WJL

Kim et al., 2021 (doi: 10.1038/s41586-­

021-­03522-­2)

Strain, strain

background

(Lactiplantibacillus

plantarum)

LactoBCAA

Kim et al., 2021 (doi: 10.1038/s41586-­

021-­03522-­2)

Sequence-­based

reagent

ITS3

White et al., 1990

PCR primers

​GCAT​​CGAT​​GAAG​​AACG​​CAGC​

Sequence-­based

reagent

ITS4

White et al., 1990

PCR primers

​TCCT​​CCGC​​TTAT​​TGAT​​ATGC​

Sequence-­based

reagent

341 F

Hugerth et al., 2014 (doi: 10.1128/

AEM.01403-­14)

PCR primers

CCTACGGGNGGCWGCAG

Sequence-­based

reagent

805R

Hugerth et al., 2014 (doi: 10.1128/

AEM.01403-­14)

PCR primers

​GACT​ACHV​GGGT​ATCT​AATCC

Sequence-­based

reagent

518F

https://www.macrogen-japan.co.jp/cap_​

seq_0104.php

PCR primers

​CCAG​​CAGC​​CGCG​​GTAA​​TACG​

Sequence-­based

reagent

NL1

Chandler et al., 2012 (doi: 10.1128/

AEM.01741-­12)

PCR primers

​GCAT​​ATCA​​ATAA​​GCGG​​AGGA​​AAAG​

Sequence-­based

reagent

NL4

Chandler et al., 2012 (doi: 10.1128/

AEM.01741-­12)

PCR primers

GGTC​CGTG​TTTC​AAGA​CGG

Sequence-­based

reagent

27F

Chandler et al., 2011 (doi: 10.1371/​

journal.​pgen.​1002272)

PCR primers

​AGAG​​TTTG​​ATCC​​TGGC​​TCAG​

Sequence-­based

reagent

1492R

Chandler et al., 2011 (doi: 10.1371/​

journal.​pgen.​1002272)

PCR primers

GGTT​ACCT​TGTT​ACGA​CTT

QIAamp DNA

Commercial assay or kit Stool Mini Kit

QIAGEN

Cat# 51504

THUNDERBIRD

Commercial assay or kit SYBR qPCR Mix

TOYOBO

Cat# QPS-­201

Commercial assay or kit InstaGene Matrix

Bio-­Rad

Cat# 7326030

Commercial assay or kit KOD FX

TOYOBO

Cat# KFX-­101

BY23849

Wizard SV Gel and

PCR Clean-­Up

Commercial assay or kit System

Promega

Cat# A9282

QIAGEN

Genomic-­tip 20G

Commercial assay or kit kit

Cat# 10223

QIAGEN

Additional information

Appendix 1 Continued on next page

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

30 of 32

Developmental Biology | Microbiology and Infectious Disease

Research article

Appendix 1 Continued

Reagent type

(species) or resource

Designation

Source or reference

Identifiers

QIAseq FX DNA

Commercial assay or kit Library Kit

QIAGEN

Cat# 180477

Rapid Barcoding

Commercial assay or kit Kit

ONT

Cat# SQK-­RBK004

Commercial assay or kit RNeasy mini kit

QIAGEN

Cat# 74104

NEBNext Ultra II

Directional RNA

Library Prep Kit for

Commercial assay or kit Illumina

NEB

Cat# E7760

Biomasher II

Commercial assay or kit homogenizer kit

NIP

Cat# 320103

Chemical compound,

drug

MRS Broth

Merck Millipore

Cat# 110661

Chemical compound,

drug

YPD medium

Clontech

Cat# 630409

Chemical compound,

drug

Potato Dextrose

Broth

Sigma-­Aldrich

Cat# P6685-­250G

Chemical compound,

drug

Propionic acid

Nacalai Tesque

Cat# 29018-­55

Chemical compound,

drug

Cycloheximide

Wako

Cat# 037-­20991

Chemical compound,

drug

Ampicillin

Nacalai Tesque

Chemical compound,

drug

Zymolyase-­20T

Nacalai Tesque

Cat# 07663-­91

Chemical compound,

drug

Leucine

Nacalai Tesque

Cat# 20327-­62

Chemical compound,

drug

Isoleucine

Peptide Institute

Cat# 2712

Chemical compound,

drug

Phloxine B

Wako

Cat# 166-­02072

Software, algorithm

FLASH

Magoč and Salzberg, 2011 (doi:

10.1093/bioinformatics/btr507)

Software, algorithm

CD-­HIT-­OTU

Fu et al., 2012 (doi: 10.1093/

bioinformatics/bts565); Li and Godzik,

2006 (doi: 10.1093/bioinformatics/

btl158)

Software, algorithm

QIIME

Caporaso et al., 2010 (doi: 10.1038/

nmeth.f.303)

Software, algorithm

NCBI BLAST

search

Johnson et al., 2008 (doi: 10.1093/nar/

gkn201)

Software, algorithm

RDP sequence

match tool

Cole et al., 2014 (doi: 10.1093/nar/

gkt1244)

Software, algorithm

Platanus_trim

http://platanus.bio.titech.ac.jp/pltanus_​

trim

Software, algorithm

GenomeScope

Vurture et al., 2017 (doi: 10.1093/

bioinformatics/btx153)

Software, algorithm

Albacore ver. 2.3.3. ONT

Additional information

Appendix 1 Continued on next page

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

31 of 32

Developmental Biology | Microbiology and Infectious Disease

Research article

Appendix 1 Continued

Reagent type

(species) or resource

Designation

Source or reference

Software, algorithm

NanoFilt

De Coster et al., 2018 (doi: 10.1093/

bioinformatics/bty149)

Software, algorithm

Porechop

https://github.com/rrwick/Porechop

Software, algorithm

MaSuRCA v3.2.6

Zimin et al., 2013 (doi: 10.1093/

bioinformatics/btt476)

Software, algorithm

BUSCO

Simão et al., 2015 (doi: 10.1093/

bioinformatics/btv351)

Software, algorithm

GenomeMatcher

Ohtsubo et al., 2008 (doi:

10.1186/1471-­2105-­9-­376)

Software, algorithm

FunGAP

Min et al., 2017 (doi: 10.1093/

bioinformatics/btx353)

Software, algorithm

Hisat2

Kim et al., 2015 (doi: 10.1038/

nmeth.3317)

Software, algorithm

gplots

Warnes et al., 2022 (https://CRAN.R-​

project.org/package=gplots)

Software, algorithm

R Development Core Team, 2020

Software, algorithm

Database for

annotation,

visualization

and integrated

discovery (DAVID) Huang et al., 2009 (doi: 10.1038/

Functional

nprot.2008.211); Sherman et al., 2022

Annotation Chart (doi: 10.1093/nar/gkac194)

Software, algorithm

MetaboAnalystR

3.3.0.

Pang et al., 2020 (doi: 10.3390/

metabo10050186)

Other

UltrafreeMC-­

PLHCC for

Metabolome

Analysis column

Human Metabolome Technologies

Other

Discovery HS F5-­3

column

Sigma-­Aldrich

Mure et al. eLife 2023;12:RP90148. DOI: https://doi.org/10.7554/eLife.90148

Identifiers

Additional information

RRID:SCR_001905

Cat# UFC3LCCNB-­ See 'Preparing samples for LC–MS

HMT

analysis' in Materials and methods

Cat# 567503-­U

See 'LC–MS/MS measurement' in

Materials and methods

32 of 32

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る