リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「In-Place Evaluation of Powering and Signaling Within Fan-Out Multiple IC Chip Packaging」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

In-Place Evaluation of Powering and Signaling Within Fan-Out Multiple IC Chip Packaging

Sonoda, Hiroki Kasai, Ryo Tanaka, Daisuke Murakami, Yoshihide Mihara, Kyoshi Araga, Yuuki Watanabe, Naoya Shimamoto, Haruo Kikuchi, Katsuya Miki, Takuji Nagata, Makoto 神戸大学

2022.07

概要

This article confirms the advantage of fan-out (FO) packaging in the electrical performance of power delivery among integrated circuit (IC) chips with the best use of land side capacitors (LSCs). On-chip in-place waveform measurements quantitatively evaluate the integrity of powering and signaling within FO wafer level packaging (FOWLP) multiple chip module (MCM) demonstrators, where a pair of IC chips are assembled with LSCs with different sizes and structures. The IC chip incorporates an array of 12 digital cores and on-chip waveform monitor (OCM) circuits. Each digital core consists of a low-voltage differential signaling (LVDS) transceiver channel that is backed by a static random access memory (SRAM)-based builtin self test (BIST) module and supplied by an on-chip voltage regulator module (VRM). The LSCs are placed on the bottom side of an FO interposer and inserted between the output of VRM and the ground plane almost ideally with the shortest length of physical traces. A Si membrane capacitor of 10 nF sustains the lowest power line impedance over the frequency range of 2.0 GHz more constantly than a multilayer ceramic counterpart, and attenuates the high-order harmonic frequency components to the clocking frequency at 750 MHz. The leverage of LSCs in powering also improves signaling and helps achieve the wider eye openings in LVDS channels. The implications are elaborated for the capacitor selections with respect to the physical types of capacitors, the size of capacitances, and the level of shares in power delivery among digital cores, all toward the higher

この論文で使われている画像

参考文献

[1] J. U. Knickerbocker et al., “3-D silicon integration and silicon packaging technology using silicon through-vias,” IEEE J. Solid-State Circuits, vol. 41, no. 8, pp. 1718–1725, Aug. 2006.

[2] J. Van Olmen et al., “3D stacked IC demonstration using a through silicon via first approach,” in IEDM Tech. Dig., Dec. 2008, pp. 303–306.

[3] P. Garrou, C. Bower, and P. Ramm, Eds., Handbook of 3D Integration: Technology and Applications of 3D Integrated Circuits. Hoboken, NJ, USA: Wiley, 2008.

[4] G. Van der Plas et al., “Design issues and considerations for low-cost 3-D TSV IC technology,” IEEE J. Solid-State Circuits, vol. 46, no. 1, pp. 293–307, Jan. 2011.

[5] P. Garrou, M. Koyanagi, and P. Ramm, Eds., Handbook of 3D Integra- tion: 3D Process Technology. Hoboken, NJ, USA: Wiley, 2014.

[6] P. D. Franzon, E. J. Marinissen, and M. S. Bakir, Eds., Handbook of 3D Integration: Design, Test, and Thermal Management. Hoboken, NJ, USA: Wiley, 2019.

[7] S. W. Yoon, A. Bahr, X. Baraton, P. C. Marimuthu, and F. Carson, “3D eWLB (embedded wafer level BGA) technology for 3D- packaging/3D-SiP (systems-in-package) applications,” in Proc. 11th Electron. Packag. Technol. Conf., Dec. 2009, pp. 915–919.

[8] C. C. Liu et al., “High-performance integrated fan-out wafer level packaging (InFO-WLP): Technology and system integration,” in IEDM Tech. Dig., Dec. 2012, pp. 14.1.1–14.1.4.

[9] J. H. Lau et al., “Fan-out wafer-level packaging for heterogeneous integration,” IEEE Trans. Compon., Packag., Manuf. Technol., vol. 8, no. 9, pp. 1544–1560, Sep. 2018.

[10] B. Keser and S. Krohnert, Eds., Advances in Embedded and Fan-Out Wafer Level Packaging Technologies. Hoboken, NJ, USA: Wiley, 2019.

[11] H. Uemura et al., “Backside optical i/o module for Si photonics integrated with electrical ICs using fan-out wafer level packaging technology,” in Proc. IEEE 68th Electron. Compon. Technol. Conf. (ECTC), May 2018, pp. 822–827.

[12] M. D. Rotaru, W. Tang, D. Rahul, and Z. Zhang, “Design and develop- ment of high density fan-out wafer level package (HD-FOWLP) for deep neural network (DNN) chiplet accelerators using advanced interface bus (AIB),” in Proc. IEEE 71st Electron. Compon. Technol. Conf. (ECTC), Jun. 2021, pp. 1258–1263.

[13] T. Yamazaki et al., “A 1ms high-speed vision chip with 3D-stacked 140GOPS column-parallel PEs for spatio-temporal image processing,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 82–83.

[14] I. Savidis, S. Kose, and E. G. Friedman, “Power noise in TSV-based 3-D integrated circuits,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 587–597, Feb. 2013.

[15] J. Roullard et al., “Evaluation of 3D interconnect routing and stacking strategy to optimize high speed signal transmission for memory on logic,” in Proc. IEEE 62nd Electron. Compon. Technol. Conf., May 2012, pp. 8–13.

[16] S. Takaya et al., “A 100GB/s wide I/O with 4096b TSVs through an active silicon interposer with in-place waveform capturing,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 434–435.

[17] C.-T. Wang and D. Yu, “Signal and power integrity analysis on integrated fan-out PoP (InFO_PoP) technology for next generation mobile appli- cations,” in Proc. IEEE 66th Electron. Compon. Technol. Conf. (ECTC), May 2016, pp. 380–385.

[18] S.-H. You et al., “Advanced fan-out package Si/PI/thermal performance analysis of novel RDL packages,” in Proc. IEEE 68th Electron. Compon. Technol. Conf. (ECTC), May 2018, pp. 1295–1301.

[19] E. Kulali, E. Wasserman, and J. Zheng, “Chip power model—A new methodology for system power integrity analysis and design,” in Proc. IEEE Electr. Perform. Electron. Packag., Oct. 2007, pp. 259–262.

[20] J. Xu et al., “A novel system-level power integrity transient analysis methodology using simplified CPM model, physics-based equivalent circuit PDN model and small signal VRM model,” in Proc. IEEE Int. Symp. Electromagn. Compat., Signal Power Integrity (EMC+SIPI), Jul. 2019, pp. 205–210.

[21] H. Suenaga, A. Tsukioka, K. Jike, and M. Nagata, “Compact simulation of chip-to-chip active noise coupling on a system PCB board,” IEEE Lett. Electromagn. Compat. Pract. Appl., vol. 2, no. 1, pp. 15–20, Mar. 2020.

[22] Q. Wang et al., “Modeling optimization of test patterns used in de- embedding method for through silicon via (TSV) measurement in silicon interposer,” in Proc. IEEE Int. Symp. Electromagn. Compat. (EMC), Jul. 2016, pp. 412–417.

[23] L. T. Guan, C. K. Fai, and D. H. S. Wee, “FOWLP electrical perfor- mances,” in Proc. IEEE 18th Electron. Packag. Technol. Conf. (EPTC), Nov. 2016, pp. 79–84.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る