リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「大容量フォトニックネットワークの実現に向けたシリコン波長選択光スイッチの研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

大容量フォトニックネットワークの実現に向けたシリコン波長選択光スイッチの研究 (本文)

中村, 文 慶應義塾大学

2021.03.23

概要

近年、スマートフォンの普及や Internet of things (IoT)の発達によって、ネットワークトラフィック量が増大し続けている。また、リモートワークの導入も進みつつあり、今後さらにインターネットの大容量化への需要は大きくなることが予想される。大容量化を実現する方法の一つとして、現在電気信号で行っている信号処理を光領域で行う、フォトニックネットワークがある。フォトニックネットワークでは、電気信号での速度・容量のボトルネックが解消され、大容量化・高速化が実現される。

本研究のテーマである波長選択光スイッチ( WSS: Wavelength Selective Switch )は、光信号を波長ごとに方路を変更できる機能を持ち、フォトニックネットワークで利用される再構成可能な光分岐挿入装置(ROADM:Reconfigurable Optical Add-Drop Multiplexer)に不可欠な素子である。現在実用化されている自由空間光学型 WSS は、スイッチング時間がミリ秒と低速であり、サイズも大型であるため、フォトニックネットワークノードの小型化、高速化に対応できない。そこで、スイッチング応答速度がマイクロ秒であるシリコン光集積回路をスイッチング素子に利用することで、小型で高速に動作する WSS が実現できる。

このような研究背景から、大容量なフォトニックネットワークの実現に向けて、シリコン フォトニクス光集積回路を用いた、拡張性の高い WSS の提案と実証を研究目的とした。従 来のシリコン導波路型 WSS では、導波路同士の交差が損失や漏れ込み光の原因となり、多 ポート化・多チャネル化を阻んでいた。そこで本研究ではシリコン導波路型 WSS での交差 導波路の削減に取り組み、交差導波路を含まない波面制御構成と消費電力を抑えたまま交 差導波路数を削減した Fold-back 構成の二つの構成を提案し、シミュレーションによるスケ ーラビリティの検討、最適化設計、1×2 WSS の試作と動作確認を行った。さらに自由空間型 においてスイッチング素子としてシリコン光スイッチを用いたハイブリッド構成を提案し、 2×2 WSS のチップ試作と解析による特性評価を行った。

第 1 章の序論では、インターネットを取り巻く状況について述べ、フォトニックネットワーク実現の必要性について示す。また、フォトニックネットワークにおける柔軟な光ノード構成である ROADM 構成について説明した後、その中での WSS の役割について述べる。 WSS は主に自由空間型と導波路型の 2 つがあり、本章ではそれぞれの利点・課題について述べ、本研究でシリコン光スイッチを採用する理由について示す。

第 2 章では、WSS の重要な構成要素であるアレイ導波路格子( AWG: Arrayed Waveguide Grating )の動作原理と設計方法、解析方法について述べる。AWG は入力された波長分割多重 (WDM: Wavlength Division Multiplexing) 信号を個々の波長チャネルに分割する波長分波器や、波長信号を合波する波長合波器として機能する。さらに、マッハツェンダー干渉器 (MZI: Mach Zehnder Interferometer)の動作原理について述べ、光スイッチ、波長フィルタの設計方法について説明する。

第 3 章では、交差導波路を含まない波面制御構成を提案する。波面制御型 WSS ではスラブ導波路での伝搬方向を波面制御によってスイッチングすることで、出力ポートの切り替えを行う。従来型の MZI 光スイッチを用いないことで、導波路交差を回避することができる。本章では波面制御構成の動作原理、設計方法について述べる。波面制御構成では、波面制御導波路本数が損失や消光比、チップサイズを決める重要なパラメータであるため、数値解析を用いた導波路本数の最適化を行い、出力ポート数・波長チャネル数といった拡張性についても議論する。波面制御構成においてチャネル数 16、チャネル間隔 200 GHz の 1×2 WSS の設計・試作を行い、平均消光比 10.1 dB、スイッチング電力 183.6 mW でのスイッチングに成功している。さらに、チャネル数 16、チャネル間隔 200 GHz の 1×4 WSS の設計・作製を行い、波面制御型 WSS の拡張性を示した。

第 4 章では、導波路交差数を削減した Fold-back 構成について提案する。Fold-back 構成では、インターリーバと AWG を用いて多段的に波長合分波を行うことで、交差数を半分以下に抑えることができる。スイッチには従来型の MZI 光スイッチを用いており、消費電力を抑えたまま、交差数を削減できる構成である。本章では、Fold-back 型 WSS の構成、動作原理について述べる。さらに数値解析を用いて、AWG 数、ポート数、チャネル数に対する導波路交差数およびチップサイズの関係を明らかにし、拡張性について議論する。さらに、1台の大型 AWG を用いる 1×2 Fold-back 型 WSS と 4 台の小型 AWG を用いる WSS の設計・試作を行っており、1 台の AWG を用いる WSS において平均消光比 10.9 dB、スイッチング電力 25.2 mW、4 台の AWG を用いる WSS において、平均消光比 3.3 dB、スイッチング電力9.1 mW のスイッチング特性を得ている。

第 5 章では、スイッチ部分にシリコン光スイッチ、波長合分波部分に自由空間光学系を用いたハイブリッド型 WSS 構成を提案する。ハイブリッド型 WSS では高速なシリコン光スイッチと拡張性の高い自由空間型波長合分波器を採用しているため、高いスケーラビリティと高速な光スイッチングが両立される。本章ではハイブリッド構成での 2×2 WSS の設計と試作を行い、シリコン光回路の性能評価を行っている。

第 6 章では本論文を総括し、結論及び今後の展望を述べる。

この論文で使われている画像

参考文献

第1章

[1-1] Tingye Li, “Advances in Optical Fiber Communications: An Historical Perspective,” IEEE J. Sel. Areas Commun., vol. 1, no. 3, pp. 356-372, Apr. 1983, DOI: 10.1109/JSAC.1983.1145944.

[1-2] A. G. Bell. “ART. XXXIV.--On the Production and Reproduction of Sound by Light,” Am. J. Sci., vol. 20, no.118, pp. 305-324, Oct. 1880.

[1-3] S. E. B. Morse, “Improvement in the Mode of‘Communicating information by signal by the application electr-magnetism,” U. S. Patent 1647A, Jun. 20, 1840.

[1-4] A. G. Bell, “Improvement in telegraphy,” U.S. Patent 174,465. Mar. 7 1876.

[1-5] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” in Proc. of Inst. Electr. Eng., vol. 113, no. 7, pp. 1151-1158, Jul. 1966, DOI: 10.1049/piee.1966.0189.

[1-6] F. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett., vol. 17, no. 10, pp. 423-425, Nov. 1970, DOI: 10.1063/1.1653255.

[1-7] D. B. Keck, P. C. Schultz, and F. Zimar, “Method of forming optical waveguide fibers,” U.S. Patent 3 737 292, Jun. 5. 1973.

[1-8] P. C. Schultz, "Fabrication of optical waveguides by the outside vapor deposition process," in Proceedings of the IEEE, vol. 68, no. 10, pp. 1187-1190, Oct. 1980, DOI: 10.1109/PROC.1980.11828.

[1-9] J. B. MacChesney, P. B. O'Connor, and H. M. Presby, “A new technique for the preparation of low-loss and graded-index optical fibers,” in Proc. of the IEEE, vol. 62, no. 9, pp. 1280- 1281, Sept. 1974, DOI: 10.1109/PROC.1974.9608.

[1-10] J. B. MacChesney, “Materials and processes for preform fabrication—Modified chemical vapor deposition and plasma chemical vapor deposition,” in Proc. of the IEEE, vol. 68, no. 10, pp. 1181-1184, Oct. 1980, DOI: 10.1109/PROC.1980.11826.

[1-11] T. Izawa, S. Sudo, and F. Hanawa. “Continuous fabrication process for high-silica fiber preforms,” IEICE TRANSACTIONS, vol.E62, no.11, pp.779-785, Nov. 1979.

[1-12] T. Izawa and N. Inagaki, “Materials and processes for fiber preform fabrication—Vapor-phase axial deposition,” in Proc. the IEEE, vol. 68, no. 10, pp. 1184-1187, Oct. 1980, DOI: 10.1109/PROC.1980.11827.

[1-13] D. B. Keck, R. D. Maurer, and P. C. Schultz. “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett., vol.22, no.7, pp. 307-309, Apr. 1973, DOI: 10.1063/1.1654649.

[1-14] D. N. Payne, and W. A. Gambling, “Zero material dispersion in optical fibres,” Electron. Lett., vol.11, no.8 pp. 176-178, Apr. 1975, DOI: 10.1049/el:19750135.

[1-15] M. Horiguchi and H. Osanai, “Spectral losses of low-OH-content optical fibres,” Electron. Lett., vol.12, no.12, pp. 310-312, Jun. 1976, DOI: 10.1049/el:19760239.

[1-16] T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, “Ultimate low-loss single-mode fibre at 1.55 μm,” Electron. Lett., vol. 15, no. 4, pp. 106-108, Feb. 1979, DOI: 10.1049/el:19790077. [1-17] T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature, vol. 187, pp. 493–494, Aug.1960, DOI: 10.1038/187493a0.

[1-18] A. Javan, W. R. Bennett, Jr., and D. R. Herriott, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett., vol. 6, no. 3, pp. 106-113, Feb. 1961, DOI: 10.1103/PhysRevLett.6.106.

[1-19] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., vol. 9, no. 9, Nov. 1962, DOI: 10.1103/PhysRevLett.9.366.

[1-20] M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill Jr., and G. Lasher, “Stimulated emission of radiation from GaAs p‐n junctions,” Appl. Phys. Lett., vol. 1., no. 3 pp. 62-64, DOI: 10.1063/1.1777371.

[1-21] T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett., vol. 1, no. 4, pp. 91-92, Dec. 1962, DOI: 10.1063/1.1753710.

[1-22] I. Hayashi, M. Panish, P. Foy, and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett., vol. 17, no. 3, pp. 109-111, Aug. 1970, DOI: 10.1063/1.1653326.

[1-23] K. Oe, and K. Sugiyama, “GaInAsP-InP double heterostructure lasers prepared by a new LPE apparatus,” Jpn. J. Appl. Phys., vol. 15, no.10, pp. 2003-2004, Oct. 1976, DOI: 10.1143/JJAP.15.2003.

[1-24] S. Arai, Y. Suematsu, and Y. Itaya, “1.67 µm Ga0. 47In0. 53As/InP DH Lasers Double Cladded with InP by LPE Technique,” Jpn. J. Appl. Phys., vol. 18, no. 3, pp. 709.-710, Mar, 1979, DOI: 10.1143/JJAP.18.709.

[1-25] K. Kikuchi, “Fundamentals of Coherent Optical Fiber Communications,” J. Light. Technol., vol. 34, no. 1, pp. 157-179, Jan, 2016, DOI: 10.1109/JLT.2015.2463719.

[1-26] J. Hecht, “Amplification, Regeneration, and Wavelength Conversion,” in Understanding Fiber Optics 5th ed., Chapter 12, Upper Saddle River, N.J, Pearson/Prentice Hall, 2006, pp. 275-305.

[1-27] R. H. Stolen, “Nonlinearity in fiber transmission,” in Proc. of the IEEE, vol. 68, no. 10, pp. 1232-1236, Oct. 1980, DOI: 10.1109/PROC.1980.11837.

[1-28] M. Nakazawa, T. Nakashima, and S. Seikai, “Raman amplification in 1.4–1.5-μm spectral region in polarization-preserving optical fibers,” J. Opt. Soc. Am. B, vol. 2, no. 4, pp. 515-521, Apr. 1985, DOI: 10.1364/JOSAB.2.000515.

[1-29] T. Saitoh and T. Mukai, “1.5 µm GaInAsP traveling-wave semiconductor laser amplifier,” IEEE J. Quantum Electron., vol. 23, no. 6, pp. 1010-1020, Jun. 1987, DOI: 10.1109/JQE.1987.1073403.

[1-30] M. J. O'Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” J. Light. Technol., vol. 6, no. 4, pp. 531-544, Apr. 1988, DOI: 10.1109/50.4035.

[1-31] P. Urquhart, "Review of rare earth doped fibre lasers and amplifiers," in IEE Proceedings J - Optoelectronics, vol. 135, no. 6, pp. 385-407, Dec. 1988, DOI: 10.1049/ip-j.1988.0071.

[1-32] R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett, vol. 23, no. 19, pp. 1026-1028, Sep. 1987, DOI: 10.1049/el:19870719.

[1-33] T. S. Kinsel and R. T. Denton, “Terminals for a high-speed optical pulse code modulation communication system: II. Optical multiplexing and demultiplexing,” in Proc. of the IEEE, vol. 56, no. 2, pp. 146-154, Feb. 1968, DOI: 10.1109/PROC.1968.6208.

[1-34] M. Nakazawa, E. Yoshida, T. Yamamoto, E. Yamada, and A. Sahara, “TDM single channel 640 Gbit/s transmission experiment over 60 km using a 400 fs pulse train and a walk-off free, dispersion-flattened nonlinear optical loop mirror,” Electron. Lett, vol. 34, no. 9, pp. 907-908, Apr. 1998, DOI: 10.1049/el_19980590.

[1-35] T. Miki and H. Ishio, “Viabilities of the Wavelength-Division-Multiplexing Transmission System Over an Optical Fiber Cable,” IEEE Trans. Commun., vol. 26, no. 7, pp. 1082-1087, Jul. 1978, DOI: 10.1109/TCOM.1978.1094172.

[1-36] International Telecommunication Union, “G.694.2: Spectral grids for WDM applications: CWDM wavelength grid”, 14-Dec-2003. [Online]. Available: https://www.itu.int/rec/T-REC- G.694.2-200312-I/en. [Accessed: 18-Dec-2020].

[1-37] International Telecommunication Union, “G.694: Spectral grids for WDM applications: DWDM frequency grid”, 13-Jun-2002. [Online]. Available: https://www.itu.int/rec/T-REC- G.694.1-200206-S/en. [Accessed: 26-Jan-2021].

[1-38] P. J. Winzer, “Scaling Optical Fiber Networks: Challenges and Solutions,” Optics & Photonics News, vol. 26, no. 3, pp. 28-35, Mar. 2015, DOI: 10.1364/OPN.26.3.000028.

[1-39] G. Rademacher, et al., “1.01 Peta-bit/s C+L-band transmission over a 15-mode fiber,” 2020 European Conference on Optical Communication (ECOC), Brussels, Belgium, Th3A-1, 2020. [1-40] D. Soma et al., “10.16 Peta-bit/s Dense SDM/WDM transmission over Low-DMD 6-Mode 19-Core Fibre Across C+L Band,” 2017 European Conference on Optical Communication (ECOC), Gothenburg, Sweden, 2017, pp. 1-3, DOI: 10.1109/ECOC.2017.8346082.

[1-41] M. Mahloo, P. Monti, J. Chen and L. Wosinska, “Cost modeling of backhaul for mobile networks,” 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, NSW, 2014, pp. 397-402, DOI 10.1109/ICCW.2014.6881230.

[1-42] 総務省, “我が国のインターネットにおけるトラヒックの集計結果(2020 年 5 月の集計結果の公表)”, 31-Jul-2020. [Online]. Available: https://www.soumu.go.jp/main_content/ 000699741 .pdf, [Accessed: 17-Dec-2020].

[1-43] M. D. Feuer, D. C. Kilper, and S. L. Woodward, “ROADMs and their system applications,” in Optical fiber telecommunications VB : Systems and Networks, 5th ed, Chapter 8, Amsterdam, Academic Press, 2008, pp. 293-343.

[1-44] S. L. Woodward, M. D. Feuer, and P. Paracharla, “ROADM-Node Architectures for Reconfigurable Photonic Network,” in Optical fiber tecommunications VIB systems and networks, 6th ed., Chapter 15 ,Oxford, England, Academic Press, 2013, pp. 683-707.

[1-45] S. Gringeri, B. Basch, V. Shukla, R. Egorov, and T. J. Xia, “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40-50, Jul. 2010, DOI: 10.1109/MCOM.2010.5496877.

[1-46] J. Homa and K. Bala, “ROADM Architectures and Their Enabling WSS Technology,” IEEE Commun. Mag., vol. 46, no. 7, pp. 150-154, July 2008, DOI: 10.1109/MCOM.2008.4557058.

[1-47] P. Roorda and B. Collings, “Evolution to Colorless and Directionless ROADM Architectures,” Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC), 2008, paper NWE2.

[1-48] Y. Li, L. Gao, G. Shen and L. Peng, "Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [Invited]," IEEE J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58-B67, Nov. 2012, DOI: 10.1364/JOCN.4.000B58.

[1-49] K. Sorimoto et al., “Demonstration of a wavelength selective switch using an LCOS and a stacked arrayed waveguide grating,” 2009 35th European Conference on Optical Communication (ECOC), Vienna, Austria, September 2009, [Online]. Available: https://ieeexplore.ieee.org/abstract /document/5287345.

[1-50] K. Sorimoto et al., “Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS,” Opt. Express, vol. 21, no. 14, pp. 17131-17149, Jul. 2013, DOI: 10.1364/OE.21.017131.

[1-51] D. M. Marom et al., “Wavelength-Selective 1 x K Switches Using Free-Space Optics and MEMS Micromirrors: Theory, Design, and Implementation,” J. Light. Technol., vol. 23, no. 4, pp. 1620-1630, Apr. 2005, DOI: 10.1109/JLT.2005.844213.

[1-52] Y. Ishii et al., “MEMS-based 1×43 wavelength-selective switch with flat passband,” 2009 35th European Conference on Optical Communication (ECOC), Vienna, Austria, Sep. 2009, [Online]. Available: https://ieeexplore.ieee.org/document/5395712.

[1-53] K. Sorimoto et al., “MEMS mirror with slot structures suitable for flexible-grid WSS,” IEICE Electron. Express, vol. 10, no. 3, pp. 20120924-20120924, Feb. 2013, DOI: 10.1587/elex.10.20120924.

[1-54] C. R. Doerr et al., “Eight-wavelength add-drop filter with true reconfigurability,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 138-140, 2003, DOI: 10.1109/LPT.2002.802382.

[1-55] H. Asakura, K. Nashimoto, D. Kudzuma, M. Hashimoto, and H. Tsuda, “High-speed wavelength selective operation of PLZT-based arrayed-waveguide grating,” Electron. Lett., vol. 48, no. 16, pp. 1009-1010, Aug. 2012, DOI: 10.1049/el.2012.1292.

[1-56] T. Yoshida, H. Asakura, T. Mizuno, H. Takahashi, and H. Tsuda, “Silica-Based 100-GHz- Spacing Integrated 40-λ 1×4 Wavelength Selective Switch,” The 39th European Conference and Exhibition on Optical Communication (ECOC), London, United Kingdom, Sep. 2013, DOI: 10.1049/cp.2013.1473.

[1-57] H. Asakura, K. Nashimoto, D. Kudzuma, H. Kawashima, and H. Tsuda, “High-speed hybrid integrated, 1×2 wavelength selective switch using PLZT optical switches and silica planar lightwave circuits,” Technical Digest of the Eighteenth Microoptics Conference, Tokyo, Japan, Oct. 2013, [Online]. Available: https://ieeexplore.ieee.org/document/6715076.

[1-58] T. Yoshida, H. Asakura, H. Tsuda, T. Mizuno, and H. Takahashi, "Switching Characteristics of a 100-GHz-Spacing Integrated 40-λ 1 × 4 Wavelength Selective Switch," IEEE Photon. Technol. Lett., vol. 26, no. 5, pp. 451-453, Mar. 2014, DOI: 10.1109/LPT.2013.2295847.

[1-59] H. Asakura et al., “A 200-GHz spacing, 17-channel, 1×2 wavelength selective switch using a silicon arrayed-waveguide grating with loopback,” 2015 International Conference on Photonics in Switching (PS), Florence, Italy, Sep. 2015, pp. 52-54, DOI: 10.1109/PS.2015.7328950.

[1-60] Y. Ikuma, T. Mizuno, H. Takahashi, T. Ikeda, and H. Tsuda, “Low-loss Integrated 1×2 Gridless Wavelength Selective Switch With a Small Number of Waveguide Crossings,” European Conference and Exhibition on Optical Communication (ECOC), Amsterdam, Netherlands, Sep. 2012, DOI: 10.1364/ECEOC.2012.Tu.3.E.5.

[1-61] Y. Ikuma, T. Mizuno, H. Takahashi, and H. Tsuda, “Integrated 40- λ 1 × 2 Wavelength Selective Switch Without Waveguide Crossings,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 531-534, Mar. 2013, DOI: 10.1109/LPT.2013.2240291.

[1-62] C. R. Doerr, L. L. Buhl, L. Chen, and N. Dupuis, “Monolithic Flexible-Grid 1 × 2 Wavelength- Selective Switch in Silicon Photonics,” J. Light. Technol., vol. 30, no. 4, pp. 473-478, Feb. 2012, DOI: 10.1109/JLT.2011.2173557.

[1-63] K. Suzuki, et al., “Broadband silicon photonics 8 × 8 switch based on double-Mach–Zehnder element switches,” Opt. Express, vol. 25, no. 7, pp. 7538-7546, Apr. 2017, DOI: 10.1364/OE.25.007538

[1-64] Y. Kokubun, Yasuo, “Basic Optical Waveguide Circuit” in Lightwave engineering, Chapter 8, Boca Raton, FL, CRC Press, 2012, pp .251-292.

[1-65] K. Okamoto, “Wave Theory of Optical Waveguides,” in Fundamentals of optical waveguides 2nd ed., Chapter 1, Amsterdam, Boston, Elsevier, 2006, pp. 1-12.

[1-66] G. P. Agrawal, “Fiber Characteristics,” in Nonlinear fiber optics, 5th ed., Chapter 1, Section 2, Amsterdam, Academic Press, 2013, pp. 3-14.

[1-67] K. Kuriki, Y. Koike, and Y. Okamoto, “Plastic Optical Fiber Lasers and Amplifiers Containing Lanthanide Complexes,” Chem. Rev., vol. 102, no. 6, pp. 2347-2356, May, 2002, DOI: 10.1021/cr010309g.

[1-68] T. Ishigure, E. Nihei, and Y. Koike, “Graded-index polymer optical fiber for high-speed data communication,” Appl. Opt., vol. 33, no. 19, pp. 4261-4266, Jul. 1994, DOI: 10.1364/AO.33.004261.

[1-69] A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron., vol. 4, no. 6, pp. 913-924, Nov./Dec. 1998, DOI: 10.1109/2944.736076.

[1-70] Y. Hida, Y. Hibino, H. Okazaki, and Y. Ohmori, “10 m long silica-based waveguide with a loss of 1.7 dB/m,” Integrated Photonics Research, California, United States, Feb., 1995, DOI: 10.1364/IPR.1995.IThC6.

[1-71] S. Suzuki, K. Shuto, H. Takahashi, and Y. Hibino, “Large-scale and high-density planar lightwave circuits with high- Delta GeO2-doped silica waveguides,” Electron. Lett., vol. 28, no. 20, pp. 1863-1864, Sep. 1992, DOI: 10.1049/el:19921192.

[1-72] B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula," Appl. Opt., vol. 23, no. 24, pp. 4477-4485, Dec. 1984, DOI: 10.1364/AO.23.004477.

[1-73] C. R. Doerr, L. Chen, Y. Chen, and L. L. Buhl, “Wide Bandwidth Silicon Nitride Grating Coupler,” IEEE Photon. Technol. Lett., vol. 22, no. 19, pp. 1461-1463, Oct. 2010, DOI: 10.1109/LPT.2010.2062497.

[1-74] J. F. Bauters et al., “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express, vol.19, no. 4, pp. 3163-3174, Feb. 2011, DOI: 10.1364/OE.19.003163.

[1-75] C. A. Mack, “Introduction to Semiconductor Lithography”, in Fundamental Principles of Optical Lithography : the Science of Microfabrication, Chapter 1, Chichester, England, Wiley, 2008, pp.1-28.

[1-76] Nikon, “2. Fabricating high-precision, multifunctional semiconductors,” Nikon Products & Solutions > Semiconductor Lithography Systems > Semiconductor Technology [Online]. Available: https://www.nikon.com/products/semi/technology/story02.htm. [Accessed: 26- Jan-2021].

[1-77] C. A. Mack, “Resolution Enhancement Technologies”, in Fundamental Principles of Optical Lithography: the Science of Microfabrication, Chapter 10, Chichester, England, Wiley, 2008, Chapter 10, pp.411-456.

[1-78] S. Owa and H. Nagasaka. “Immersion lithography: its potential performance and issues,” Proc.SPIE, Vol. 5040, pp. 724-733, Jun. 2003, DOI: 10.1117/12.504599.

[1-79] Nikon, “NSR-S635E”, Products & Technology, [Online]. Available: https://www.nikonprecis ion.com/ products- and-technology/immersion-and-multiple-patterning/nsr-s635e/, [Accessed: 26-Jan-2021].

[1-80] Canon, “FPA-6300ES6a”, Industrial Products, Semiconductor Lithography Equipment, [Online]. Available: https://global.canon/en/product/indtech/semicon/fpa6300es6a.html, [Accessed: 26-Jan-2021].

[1-81] ASML, “DUV LITHOGRAPHY SYSTEMS TWINSCAN NXT:2000i”, [Online]. Available: https://www.asml.com/en/products/duv-lithography-systems/twinscan-nxt2000i.

[1-82] ASML, “EUV LITHOGRAPHY SYSTEMS TWINSCAN NXE:3400C”, [Online]. Available: https://www.asml.com/en/products/euv-lithography-systems/twinscan-nxe3400c.

第2章

[2-1] K. Okamoto, “Planar Lightwave Circuits”, in Fundamentals of optical waveguides, 2nd ed., Chapter 9, Amsterdam, Boston: Elsevier, 2006, pp. 416-534.

[2-2] P. Munoz, D. Pastor, and J. Capmany, “Modeling and Design of Arrayed Waveguide Gratings,” J. Light. Technol., vol. 20, no. 4, pp. 661-674, Apr. 2002.

[2-3] Y. Kokubun, Yasuo, “Basic Optical Waveguide Circuit” in Lightwave engineering, Chapter 8, Boca Raton, FL, CRC Press, 2012, pp .251-292.

[2-4] D. H. Bailey and P. N. Swarztrauber, “A Fast Method for the Numerical Evaluation of Continuous Fourier and Laplace Transforms,” SIAM J. Sci. Comput., vol. 15, no. 5, pp. 1105- 1110, Sep. 1994, DOI: 10.1137/0915067.

[2-5] S. Pathak et al., “Effect of Mask Discretization on Performance of Silicon Arrayed Waveguide Gratings,” IEEE Photon. Technol. Letters, vol. 26, no. 7, pp. 718-721, Apr. 2014, DOI: 10.1109/LPT.2014.2303793.

[2-6] T. Horikawa, et al., “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectronic Eng., vol. 156, pp. 46- 49, Apr. 2016, DOI: 10.1016/j.mee.2015.11.015.

[2-7] R. Ulrich, “Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique, vol. 6, no.5, pp. 253-262, Sep. 1975, DOI: 10.1088/0335-7368/6/5/302.

[2-8] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self- imaging: principles and applications,” J. Light. Technol., vol. 13, no. 4, pp. 615-627, Apr. 1995, DOI: 10.1109/50.372474.

[2-9] N. S. Kapany and J. J. Burke, “Distrubuted Coupling in Slab Waveguide”, in Optical Waveguides, Chapter 3, New York: Academic Press, 1972. pp 35-89.

[2-10] M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt. vol. 33, no. 18, pp. 3905-3911, Jun. 1994, DOI: 10.1364/AO.33.003905.

第3章

[3-1] C. R. Doerr, L. L. Buhl, L. Chen, and N. Dupuis, “Monolithic Flexible-Grid 1 × 2 Wavelength- Selective Switch in Silicon Photonics,” J. Light. Technol., vol. 30, no. 4, pp. 473-478, Feb. 2012, DOI: 10.1109/JLT.2011.21733557.

[3-2] M. J. Kwack, T. Tanemura, A. Higo, and Y. Nakano, “Monolithic InP strictly non-blocking 8×8 switch for high-speed WDM optical interconnection,” Opt. Express, vol. 20, no. 27, pp. 28734-28741, Dec. 2012, DOI: 10.1364/OE.20.028734.

[3-3] C. R. Doerr and C. Dragone, “Proposed optical cross connect using a planar arrangement of beam steerers,” IEEE Photon. Technol. Lett., vol. 11, no. 2, pp. 197-199, Feb. 1999, DOI: 10.1109/68.740702.

[3-4] F. Nakamura, K. Muramatsu, and H. Tsuda, “Design of a Wavefront Control Type Compact Silicon Wavelength Selective Switch,” Frontiers in Optics 2016, Rochester, New York, Oct., 2016, DOI: 10.1364/FIO.2016.JW4A.144.

[3-5] F. Nakamura et al., “1 × 2 Wavefront Control Type Wavelength-Selective Switch by Silicon Waveguides,” 19th European Conference on Integrated Optics, Eindhoven, Netherlands, Apr., 2017, MP1.1, [Online] Available: https://www.ecio-conference.org/wp-content/uploads/ 2017/ 03/ECIO_2017_ MP1.1.pdf.

[3-6] F. Nakamura et al., “Integrated silicon photonic wavelength-selective switch using wavefront control waveguides,” Opt. Express, vol. 26, no. 10, pp. 13573-13589, May 2018, DOI: 10.1364/OE.26.013573.

[3-7] K. Muramatsu et al., “Evaluation of the phase error in Si-wire arrayed-waveguide gratings fabricated by ArF-immersion photolithography,” IEICE Electronics Express, vol. 12, no. 7,

pp. 20150019-20150019, Mar. 2015, DOI: 10.1587/elex.12.20150019.

[3-8] T. Horikawa, et al., “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectronic Eng., vol. 156, pp. 46- 49, Apr. 2016, DOI: 10.1016/j.mee.2015.11.015.

第4章

[4-1] Y. Tachikawa, Y. Inoue, M. Ishii and T. Nozawa, “Arrayed-waveguide grating multiplexer with loop-back optical paths and its applications,” J. Light. Technol., vol. 14, no. 6, pp. 977- 984, Jun. 1996, DOI: 10.1109/50.511597.

[4-2] Y. Ikuma, T. Mizuno, H. Takahashi and H. Tsuda, “Integrated 40-λ 1 × 2 Wavelength Selective Switch Without Waveguide Crossings,” IEEE Photon. Technol. Lett., vol. 25, no. 6, pp. 531- 534, Mar. 2013, DOI: 10.1109/LPT.2013.2240291.

[4-3] O. Ishida, H. Takahashi, S. Suzuki and Y. Inoue, “Multichannel frequency-selective switch employing an arrayed-waveguide grating multiplexer with Fold-back optical paths,” IEEE Photon. Technol. Lett., vol. 6, no. 10, pp. 1219-1221, Oct. 1994, DOI: 10.1109/68.329644.

[4-4] H. Asakura, K. Sugiyama and H. Tsuda, “Design of a 1×2 wavelength selective switch using an arrayed-waveguide grating with Fold-back paths on a silicon platform,” 2016 21st OptoElectronics and Communications Conference (OECC), Niigata, Japan, Jul. 2016, pp. 1- 3, [Online] Available : https://ieeexplore.ieee.org/abstract/document/7718417.

[4-5] F. Nakamura, et al, “1 × 2 silicon wavelength selective switch using fold back arrayed- waveguide gratings”, Photonics in Switching in Advanced Photonics 2017, New Orleans, USA, Jul. 2017, pp. 1-3, DOI: 10.1364/PS.2017.PTu3C.3.

[4-6] F. Nakamura, et al., “Characteristics of 1 × 2 Silicon Wavelength Selective Switch Using Arrayed-Waveguide Gratings with Fold-back Waveguides” 18th International Conference on Optical Communications and Networks (ICOCN), Huangshan, China, Aug. 2019 pp. 1-2, DOI: 10.1109/ICOCN.2019.8934265.

[4-7] F. Nakamura, et al., “Silicon photonics based 1× 2 wavelength selective switch using Fold- back arrayed-waveguide gratings”, IEICE Electronics Express, vol.15, 14, pp. 20180532- 20180532, Jul. 2018, DOI: 10.1587/elex.15.20180532.

[4-8] F. Nakamura, et al., “Silicon based 1 × M wavelength selective switch using arrayed waveguide gratings with Fold-back waveguides”, J. Light. Technol., [Accepted for publication].

[4-9] Y. Ma et al., “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express, vol. 21, no. 24, pp. 29374-29382, Dec. 2013, DOI: 10.1364/OE.21.029374.

[4-10] T. Horikawa, et al., “The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides,” Microelectronic Eng., vol. 156, pp. 46- 49, Apr. 2016, DOI: 10.1016/j.mee.2015.11.015.

[4-11] S.-H. Kim, G. Cong, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk waveguide crossing based on 1×1 MMI structure of silicon-wire waveguide,” 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR), Kyoto, Japan, Jul. 2013, pp. 1-2, DOI: 10.1109/CLEOPR.2013.6600447.

[4-12] K. Suzuki, et al., “Low Insertion Loss and Power Efficient 32 × 32 Silicon Photonics Switch with Extremely-High-Δ PLC Connector,” Optical Fiber Communication Conference (OFC), San Diego, USA, Mar. 2018, DOI: 10.1364/OFC.2018.Th4B.5.

[4-13] H. Lu and W. Wang, "Cyclic Arrayed Waveguide Grating Devices With Flat-Top Passband and Uniform Spectral Response," IEEE Photon. Technol. Lett., vol. 20, no. 1, pp. 3-5, Jan. 2008, DOI: 10.1109/LPT.2007.910090.

第5章

[5-1] K. Sorimoto et al., “Compact and phase-error-robust multilayered AWG-based wavelength selective switch driven by a single LCOS,” Opt. Express, vol. 21, no. 14, pp. 17131-17149, 2013, DOI: 10.1364/OE.21.017131.

[5-2] K. Suzuki, Y. Ikuma, E. Hashimoto, K. Yamaguchi, M. Itoh and T. Takahashi, “Ultra-high port count wavelength selective switch employing waveguide-based I/O frontend, ” 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, 2015, pp. 1-3, DOI: 10.1364/OFC.2015.Tu3A.7.

[5-3] A. Yariv and Y. Pochi, “Rays and Optical Beams”, in Photonics : Optical Electronics in Modern Communications, 6th ed., Chapter 2, New York: Oxford University Press, pp. 66-109.

[5-4] D. C. O’Shea, “Gaussian Beams (Making a laser beam do what you want it to)” in Elements of Modern Optical Design, Chapter 7, New York: Wiley, 1985, pp.-230-269.

[5-5] S. A. Self, “Focusing of spherical Gaussian beams,” Appl. optics, vol. 22, no. 5, pp. 658-661, Mar. 1983, DOI: 10.1364/AO.22.000658.

[5-6] R. Marchetti, et al. “High-efficiency grating-couplers: demonstration of a new design strategy,” Scientific reports, vol. 7, no. 16670, pp.1-8, Nov. 2017, DOI: 10.1038/s41598-017-16505-z. [5-7] J. W. Goodman, “Wave-Optics Analysis of Coherent Optical system” in Introduction to Fourier optics, 3rd ed., Chpater 5, Englewood, Colorado: Roberts & Co. Publishers, 2005, pp.97-126.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る