リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A concise in vitro model for evaluating interactions between macrophage and skeletal muscle cells during muscle regeneration」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A concise in vitro model for evaluating interactions between macrophage and skeletal muscle cells during muscle regeneration

Kase, Naoya Kitagawa, Yohko Ikenaka, Akihiro Niwa, Akira Saito, Megumu K. 京都大学 DOI:10.3389/fcell.2023.1022081

2023.05.18

概要

Skeletal muscle has a highly regenerative capacity, but the detailed process is not fully understood. Several in vitro skeletal muscle regeneration models have been developed to elucidate this, all of which rely on specialized culture conditions that limit the accessibility and their application to many general experiments. Here, we established a concise in vitro skeletal muscle regeneration model using mouse primary cells. This model allows evaluation of skeletal muscle regeneration in two-dimensional culture system similar to a typical cell culture, showing a macrophage-dependent regenerative capacity, which is an important process in skeletal muscle regeneration. Based on the concept that this model could assess the contribution of macrophages of various phenotypes to skeletal muscle regeneration, we evaluated the effect of endotoxin pre-stimulation for inducing various changes in gene expression on macrophages and found that the contribution to skeletal muscle regeneration was significantly reduced. The gene expression patterns differed from those of naive macrophages, especially immediately after skeletal muscle injury, suggesting that the difference in responsiveness contributed to the difference in regenerative efficiency. Our findings provide a concise in vitro model that enables the evaluation of the contribution of individual cell types, such as macrophages and muscle stem cells, on skeletal muscle regeneration.

この論文で使われている画像

参考文献

Al-Zaeed, N., Budai, Z., Szondy, Z., and Sarang, Z. (2021). TAM kinase signaling is

indispensable for proper skeletal muscle regeneration in mice. Cell. Death Dis. 12, 611.

doi:10.1038/s41419-021-03892-5

Juhas, M., Engelmayr, G. C., Fontanella, A. N., Palmer, G. M., and Bursac, N. (2014).

Biomimetic engineered muscle with capacity for vascular integration and functional

maturation in vivo. Proc. Natl. Acad. Sci. 111, 5508–5513. doi:10.1073/pnas.1402723111

Almada, A. E., and Wagers, A. J. (2016). Molecular circuitry of stem cell fate in skeletal muscle

regeneration, ageing and disease. Nat. Rev. Mol. Cell. Biol. 17, 267–279. doi:10.1038/nrm.2016.7

Liao, Y., Smyth, G. K., and Shi, W. (2014). FeatureCounts: An efficient general

purpose Program for assigning sequence reads to genomic features. Bioinformatics 30,

923–930. doi:10.1093/bioinformatics/btt656

Baht, G. S., Bareja, A., Lee, D. E., Rao, R. R., Huang, R., Huebner, J. L., et al. (2020).

Meteorin-like facilitates skeletal muscle repair through a stat3/IGF-1 mechanism. Nat.

Metab. 2, 278–289. doi:10.1038/s42255-020-0184-y

Lu, H., Huang, D., Saederup, N., Charo, I. F., Ransohoff, R. M., and Zhou, L. (2011).

Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute

skeletal muscle injury. FASEB J. 25, 358–369. doi:10.1096/fj.10-171579

Bhattarai, S., Li, Q., Ding, J., Liang, F., Gusev, E., Lapohos, O., et al. (2022). TLR4 is a

regulator of trained immunity in a murine model of Duchenne muscular dystrophy.

Nat. Commun. 13, 879. doi:10.1038/s41467-022-28531-1

Mauro, A. (1961). Satellite cell of skeletal muscle fibers. J. Biophysical Biochem. Cytol.

9, 493–495. doi:10.1083/jcb.9.2.493

Burzyn, D., Kuswanto, W., Kolodin, D., Shadrach, J. L., Cerletti, M., Jang, Y., et al.

(2013). A special population of regulatory T cells potentiates muscle repair. Cell. 155,

1282–1295. doi:10.1016/j.cell.2013.10.054

McLennan, I. S. (1996). Degenerating and regenerating skeletal muscles contain

several subpopulations of macrophages with distinct spatial and temporal distributions.

J. Anat. 188, 17–28.

Cantini, M., Massimino, M. L., Rapizzi, E., Rossini, K., Catani, C., Dallalibera, L., et al.

(1995). Human satellite cell-proliferation in vitro is regulated by autocrine secretion of

IL-6 stimulated by a soluble factor(s) released by activated monocytes. Biochem.

Biophysical Res. Commun. 216, 49–53. doi:10.1006/bbrc.1995.2590

O’Carroll, C., Fagan, A., Shanahan, F., and Carmody, R. J. (2014). Identification of a unique

hybrid macrophage-polarization state following recovery from lipopolysaccharide tolerance.

J. Immunol. 192, 427–436. doi:10.4049/jimmunol.1301722

Paliwal, P., Pishesha, N., Wijaya, D., and Conboy, I. M. (2012). Age dependent

increase in the levels of osteopontin inhibits skeletal muscle regeneration. Aging 4,

553–566. doi:10.18632/aging.100477

Castiglioni, A., Corna, G., Rigamonti, E., Basso, V., Vezzoli, M., Monno, A., et al.

(2015). FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate

of satellite cells and guide effective tissue regeneration. PloS One 10, e0128094. doi:10.

1371/journal.pone.0128094

Chazaud, B. (2020). A macrophage-derived adipokine supports skeletal muscle

regeneration. Nat. Metab. 2, 213–214. doi:10.1038/s42255-020-0186-9

Quintin, J., Saeed, S., Martens, J. H. A., Giamarellos-Bourboulis, E. J., Ifrim, D. C.,

Logie, C., et al. (2012). Candida albicans infection affords protection against reinfection

via functional reprogramming of monocytes. Cell. Host Microbe 12, 223–232. doi:10.

1016/j.chom.2012.06.006

Davoudi, S., Xu, B., Jacques, E., Cadavid, J. L., McFee, M., Chin, C., et al. (2022).

MEndR: An in vitro functional assay to predict in vivo muscle stem cell-mediated repair.

Adv. Funct. Mater. 32, 2106548. doi:10.1002/adfm.202106548

Saclier, M., Cuvellier, S., Magnan, M., Mounier, R., and Chazaud, B. (2013).

Monocyte/macrophage interactions with myogenic precursor cells during skeletal

muscle regeneration. FEBS J. 280, 4118–4130. doi:10.1111/febs.12166

Dekkers, K. F., Neele, A. E., Jukema, J. W., Heijmans, B. T., and de Winther, M. P. J.

(2019). Human monocyte-to-macrophage differentiation involves highly localized gain

and loss of DNA methylation at transcription factor binding sites. Epigenetics chromatin

12, 34. doi:10.1186/s13072-019-0279-4

Saeed, S., Quintin, J., Kerstens, H. H. D., Rao, N. A., Aghajanirefah, A., Matarese, F.,

et al. (2014). Epigenetic programming of monocyte-to-macrophage differentiation and

trained innate immunity. Science 345, 1251086. doi:10.1126/science.1251086

Sass, F. A., Fuchs, M., Pumberger, M., Geissler, S., Duda, G. N., Perka, C., et al. (2018).

Immunology guides skeletal muscle regeneration. Int. J. Mol. Sci. 19, 835. doi:10.3390/

ijms19030835

Domínguez-Andrés, J., and Netea, M. G. (2020). The specifics of innate immune

memory. Science 368, 1052–1053. doi:10.1126/science.abc2660

Ferrara, P. J., Yee, E. M., Petrocelli, J. J., Fix, D. K., Hauser, C. T., de Hart, N. M. M. P.,

et al. (2022). Macrophage immunomodulation accelerates skeletal muscle functional

recovery in aged mice following disuse atrophy. J. Appl. physiology 133, 919–931. doi:10.

1152/japplphysiol.00374.2022

Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki,

M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. Cell. 102,

777–786. doi:10.1016/S0092-8674(00)00066-0

Seeley, J. J., and Ghosh, S. (2017). Molecular mechanisms of innate memory and

tolerance to LPS. J. Leukoc. Biol. 101, 107–119. doi:10.1189/jlb.3MR0316-118RR

Fleming, J. W., Capel, A. J., Rimington, R. P., Wheeler, P., Leonard, A. N., Bishop, N.

C., et al. (2020). Bioengineered human skeletal muscle capable of functional

regeneration. BMC Biol. 18, 145. doi:10.1186/s12915-020-00884-3

Segawa, M., Fukada, S., Yamamoto, Y., Yahagi, H., Kanematsu, M., Sato, M., et al.

(2008). Suppression of macrophage functions impairs skeletal muscle regeneration with

severe fibrosis. Exp. Cell. Res. 314, 3232–3244. doi:10.1016/j.yexcr.2008.08.008

Fleming, J. W., Capel, A. J., Rimington, R. P., Player, D. J., Stolzing, A., and Lewis, M.

(2019). Functional regeneration of tissue engineered skeletal muscle in vitro is

dependent on the inclusion of basement membrane proteins. Cytoskeleton 76,

371–382. doi:10.1002/cm.21553

Shen, W., Li, Y., Zhu, J., Schwendener, R., and Huard, J. (2008). Interaction between

macrophages, TGF-beta1, and the COX-2 pathway during the inflammatory phase of skeletal

muscle healing after injury. J. Cell. Physiology 214, 405–412. doi:10.1002/jcp.21212

Foster, S. L., Hargreaves, D. C., and Medzhitov, R. (2007). Gene-specific control of

inflammation by TLR-induced chromatin modifications. Nature 447, 972–978. doi:10.

1038/nature05836

Sica, A., and Mantovani, A. (2012). Macrophage plasticity and polarization: In vivo

veritas. J. Clin. Investigation 122, 787–795. doi:10.1172/JCI59643

Simões, F. C., Cahill, T. J., Kenyon, A., Gavriouchkina, D., Vieira, J. M., Sun, X., et al. (2020).

Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration

and mouse heart repair. Nat. Commun. 11, 600. doi:10.1038/s41467-019-14263-2

Gao, W. J., Liu, J. X., Liu, M. N., Yao, Y. D., Liu, Z. Q., Liu, L., et al. (2021). Macrophage 3D

migration: A potential therapeutic target for inflammation and deleterious progression in

diseases. Pharmacol. Res. 167, 105563. doi:10.1016/j.phrs.2021.105563

Subramanian, A., Kuehn, H., Gould, J., Tamayo, P., and Mesirov, J. P. (2007). GSEAP: A desktop application for gene set enrichment analysis. Bioinformatics 23,

3251–3253. doi:10.1093/bioinformatics/btm369

Ge, S. X., Jung, D., and Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for

animals and plants. Bioinformatics 36, 2628–2629. doi:10.1093/bioinformatics/btz931

Ge, S. X., Son, E. W., and Yao, R. (2018). Idep: An integrated web application for

differential expression and pathway analysis of RNA-seq data. BMC Bioinforma. 19,

534. doi:10.1186/s12859-018-2486-6

Tedesco, F. S., Dellavalle, A., Diaz-Manera, J., Messina, G., and Cossu, G. (2010).

Repairing skeletal muscle: Regenerative potential of skeletal muscle stem cells. J. Clin.

Investigation 120, 11–19. doi:10.1172/JCI40373

Gong, T., Liu, L., Jiang, W., and Zhou, R. (2020). DAMP-sensing receptors in sterile

inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112. doi:10.1038/

s41577-019-0215-7

Tiburcy, M., Markov, A., Kraemer, L. K., Christalla, P., Rave-Fraenk, M., Fischer, H. J.,

et al. (2019). Regeneration competent satellite cell niches in rat engineered skeletal

muscle. FASEB BioAdvances 1, 731–746. doi:10.1096/fba.2019-00013

Hardy, D., Besnard, A., Latil, M., Jouvion, G., Briand, D., Thépenier, C., et al. (2016).

Comparative study of injury models for studying muscle regeneration in mice. PLOS

ONE 11, e0147198. doi:10.1371/journal.pone.0147198

Uezumi, A., Fukada, S., Yamamoto, N., Takeda, S., and Tsuchida, K. (2010).

Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell

formation in skeletal muscle. Nat. Cell. Biol. 12, 143–152. doi:10.1038/ncb2014

Hoene, M., Runge, H., Häring, H. U., Schleicher, E. D., and Weigert, C. (2013). Interleukin-6

promotes myogenic differentiation of mouse skeletal muscle cells: Role of the STAT3 pathway.

Am. J. Physiology-Cell Physiology 304, 128–136. doi:10.1152/ajpcell.00025.2012

Wynn, T. A., and Vannella, K. M. (2016). Macrophages in tissue repair, regeneration,

and fibrosis. Immunity 44, 450–462. doi:10.1016/j.immuni.2016.02.015

Jentho, E., and Weis, S. (2021). DAMPs and innate immune training. Front. Immunol.

12, 699563. doi:10.3389/fimmu.2021.699563

Yahiaoui, L., Gvozdic, D., Danialou, G., Mack, M., and Petrof, B. J. (2008). CC family

chemokines directly regulate myoblast responses to skeletal muscle injury. J. Physiology

586, 3991–4004. doi:10.1113/jphysiol.2008.152090

Joe, A. W. B., Yi, L., Natarajan, A., Grand, F. L., So, L., Wang, J., et al. (2010). Muscle

injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat.

Cell. Biol. 12, 153–163. doi:10.1038/ncb2015

Zhang, J., Qu, C., Li, T., Cui, W., Wang, X., and Du, J. (2019). Phagocytosis mediated

by scavenger receptor class BI promotes macrophage transition during skeletal muscle

regeneration. J. Biol. Chem. 294, 15672–15685. doi:10.1074/jbc.RA119.008795

Juhas, M., Abutaleb, N., Wang, J. T., Ye, J., Shaikh, Z., Sriworarat, C., et al. (2018).

Incorporation of macrophages into engineered skeletal muscle enables enhanced muscle

regeneration. Nat. Biomed. Eng. 2, 942–954. doi:10.1038/s41551-018-0290-2

Frontiers in Cell and Developmental Biology

Zubair, K., You, C., Kwon, G., and Kang, K. (2021). Two faces of macrophages:

Training and tolerance. Biomedicines 9, 1596. doi:10.3390/biomedicines9111596

11

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る