リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Long‐Term Density Trend in the Mesosphere and Lower Thermosphere From Occultations of the Crab Nebula With X‐Ray Astronomy Satellites」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Long‐Term Density Trend in the Mesosphere and Lower Thermosphere From Occultations of the Crab Nebula With X‐Ray Astronomy Satellites

Katsuda, Satoru Enoto, Teruaki Lommen, Andrea N. Mori, Koji Motizuki, Yuko Nakajima, Motoki Ruhl, Nathaniel C. Sato, Kosuke Stober, Gunter Tashiro, Makoto S. Terada, Yukikatsu Wood, Kent S. 京都大学 DOI:10.1029/2022JA030797

2023.02

概要

We present long-term density trends of the Earth's upper atmosphere at altitudes between 71 and 116 km, based on atmospheric occultations of the Crab Nebula observed with X-ray astronomy satellites, ASCA, RXTE, Suzaku, NuSTAR, and Hitomi. The combination of the five satellites provides a time period of 28 years from 1994 to 2022. To suppress seasonal and latitudinal variations, we concentrate on the data taken in autumn (49 < doy < 111) and spring (235 < doy < 297) in the northern hemisphere with latitudes of 0°–40°. With this constraint, local times are automatically limited either around noon or midnight. We obtain four sets (two seasons × two local times) of density trends at each altitude layer. We take into account variations due to a linear trend and the 11-year solar cycle using linear regression techniques. Because we do not see significant differences among the four trends, we combine them to provide a single vertical profile of trend slopes. We find a negative density trend of roughly −5%/decade at every altitude. This is in reasonable agreement with inferences from settling rate of the upper atmosphere. In the 100–110-km altitude, we found an exceptionally high density decline of about −12%/decade. This peak may be the first observational evidence for strong cooling due to water vapor and ozone near 110 km, which was first identified in a numerical simulation by Akmaev et al. (2006, https://doi.org/10.1016/j.jastp.2006.03.008). Further observations and numerical simulations with suitable input parameters are needed to establish this feature.

参考文献

Aikin, A. C., Hedin, A. E., Kendig, D. J., & Drake, S. (1993). Thermospheric molecular oxygen measurements using the ultraviolet spectrometer on the Solar Maximum Mission spacecraft. Journal of Geophysical Research, 98(A10), 17607–17614. https://doi.org/10.1029/93JA01468 Akmaev, R. A., Fomichev, V. I., & Zhu, X. (2006). Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmos-phere. Journal of Atmospheric and Solar-Terrestrial Physics, 68(17), 1879–1889. https://doi.org/10.1016/j.jastp.2006.03.008

Arnaud, K. A. (1996). XSPEC: The first ten years. In G. H. Jacoby, & J. Barnes (Eds.), Astronomical data analysis software and systems v (Vol. 101, p. 17).

Bailey, S. M., Thurairajah, B., Hervig, M. E., Siskind, D. E., Russell, J. M., & Gordley, L. L. (2021). Trends in the polar summer mesosphere temperature and pressure altitude from satellite observations. Journal of Atmospheric and Solar-Terrestrial Physics, 220, 105650. https://doi. org/10.1016/j.jastp.2021.105650

Beig, G. (2011). Long-term trends in the temperature of the mesosphere/lower thermosphere region: 2. Solar response. Journal of Geophysical Research, 116, A00H12. https://doi.org/10.1029/2011JA016766

Bernhard, G., & Stierle, S. (2020). Trends of UV radiation in Antarctica. Atmosphere, 11(8), 795. https://doi.org/10.3390/atmos11080795 Bhalerao, V. (2012). Neutron stars and NuSTAR (Unpublished doctoral dissertation). California Institute of Technology.

Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., & Burke, W. J. (2008). A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. Paper AIAA 2008–6438 presented at AIAA/AAS Astrodynamics Specialist Conferenceand Exhibit. Honolulu, Hawaii: Am. Inst. of Aeronaut. and Astronaut.

Bremer, J. (2008). Long-term trends in the ionospheric E and F1 regions. Annales Geophysicae, 26(5), 1189–1197. https://doi.org/10.5194/ angeo-26-1189-2008

Bremer, J., & Peters, D. (2008). Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 70(11–12), 1473–1481. https://doi.org/10.1016/j.jastp.2008.03.024

Clemesha, B. R., Batista, P. P., & Simonich, D. M. (1997). Long-term and solar cycle changes in the atmospheric sodium layer. Journal of Atmos- pheric and Solar-Terrestrial Physics, 59(13), 1673–1678. https://doi.org/10.1016/S1364-6826(96)00166-6

Cnossen, I. (2020). Analysis and attribution of climate change in the upper atmosphere from 1950 to 2015 simulated by WACCM-X. Journal of Geophysical Research: Space Physics, 125, e2020JA028623. https://doi.org/10.1029/2020JA028623

Cnossen, I., Liu, H., & Lu, H. (2016). The whole atmosphere response to changes in the Earth’s magnetic field from 1900 to 2000: An example of “top-down” vertical coupling. Journal of Geophysical Research: Atmospheres, 121, 7781–7800. https://doi.org/10.1002/2016JD024890 Danilov, A. D., & Konstantinova, A. V. (2020). Long-term variations in the parameters of the middle and upper atmosphere and ionosphere (Review). Geomagnetism and Aeronomy, 60(4), 397–420. https://doi.org/10.1134/S0016793220040040

Determan, J. R., Budzien, S. A., Kowalski, M. P., Lovellette, M. N., Ray, P. S., Wolff, M. T., et al. (2007). Measuring atmospheric density with X-ray occultation sounding. Journal of Geophysical Research, 112, A06323. https://doi.org/10.1029/2006JA012014

Emmert, J. T. (2015). Altitude and solar activity dependence of 1967–2005 thermospheric density trends derived from orbital drag. Journal of Geophysical Research: Space Physics, 120, 2940–2950. https://doi.org/10.1002/2015JA021047

Emmert, J. T., Drob, D. P., Picone, J. M., Siskind, D. E., Jones, M., Mlynczak, M. G., et al. (2021). NRLMSIS 2.0: A whole atmosphere empirical model of temperature and neutral species densities. Earth and Space Science, 8, e2020EA001321. https://doi.org/10.1029/2020EA001321 Emmert, J. T., Picone, J. M., & Meier, R. R. (2008). Thermospheric global average density trends, 1967–2007, derived from orbits of 5000 near-Earth objects. Geophysical Research Letters, 35, L05101. https://doi.org/10.1029/2007GL032809

Emmert, J. T., Stevens, M. H., Bernath, P. F., Drob, D. P., & Boone, C. D. (2012). Observations of increasing carbon dioxide concentration in Earth’s thermosphere. Nature Geoscience, 5(12), 868–871. https://doi.org/10.1038/ngeo1626

Fiedler, J., Baumgarten, G., Berger, U., & Lübken, F.-J. (2017). Long-term variations of noctilucent clouds at ALOMAR. Journal of Atmospheric and Solar-Terrestrial Physics, 162, 79–89. https://doi.org/10.1016/j.jastp.2016.08.006

Friedrich, M., Pock, C., & Torkar, K. (2017). Long-term trends in the D- and E-region based on rocket-borne measurements. Journal of Atmos- pheric and Solar-Terrestrial Physics, 163, 78–84. https://doi.org/10.1016/j.jastp.2017.04.009

Garcia, R. R., López-Puertas, M., Funke, B., Kinnison, D. E., Marsh, D. R., & Qian, L. (2016). On the secular trend of COx and CO2 in the lower thermosphere. Journal of Geophysical Research: Atmospheres, 121, 3634–3644. https://doi.org/10.1002/2015JD024553

Goessling, H. F., & Bathiany, S. (2016). Why CO2 cools the middle atmosphere—A consolidating model perspective. Earth System Dynamics, 7(3), 697–715. https://doi.org/10.5194/esd-7-697-2016

Hall, C. M., Holmen, S. E., Meek, C. E., Manson, A. H., & Nozawa, S. (2016). Change in turbopause altitude at 52 and 70°N. Atmospheric Chemistry and Physics, 16(4), 2299–2308. https://doi.org/10.5194/acp-16-2299-2016

Harrison, F. A., Craig, W. W., Christensen, F. E., Hailey, C. J., Zhang, W. W., Boggs, S. E., et al. (2013). The Nuclear Spectroscopic Telescope Array (NuSTAR) high-energy X-ray mission. The Astrophysical Journal, 770(2), 103. https://doi.org/10.1088/0004-637X/770/2/103

Hubbell, J. H., Gimm, H. A., & Øverbø, I. (1980). Pair, triplet, and total atomic cross sections (and mass attenuation coefficients) for 1 MeV-100 GeV photons in elements Z=1 to 100. Journal of Physical and Chemical Reference Data, 9(4), 1023–1148. https://doi.org/10.1063/1.555629 Jahoda, K., Markwardt, C. B., Radeva, Y., Rots, A. H., Stark, M. J., Swank, J. H., et al. (2006). Calibration of the Rossi X-ray timing explorer proportional counter array. The Astrophysical Journal-Supplement Series, 163(2), 401–423. https://doi.org/10.1086/500659

Jahoda, K., Swank, J. H., Giles, A. B., Stark, M. J., Strohmayer, T., Zhang, W., & Morgan, E. H. (1996). In-orbit performance and calibration of the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA). In O. H. Siegmund, & M. A. Gummin (Eds.), EUV, X-ray, and gamma-ray instrumentation for astronomy vii (Vol. 2808, pp. 59–70). https://doi.org/10.1117/12.256034

Katsuda, S., Fujiwara, H., Ishisaki, Y., Yoshitomo, M., Mori, K., Motizuki, Y., et al. (2021). New measurement of the vertical atmospheric density profile from occultations of the Crab Nebula with X ray astronomy satellites Suzaku and Hitomi. Journal of Geophysical Research: Space Physics, 126, e2020JA028886. https://doi.org/10.1029/2020JA028886

Koyama, K., Tsunemi, H., Dotani, T., Bautz, M. W., Hayashida, K., Tsuru, T. G., et al. (2007). X-ray imaging spectrometer (XIS) on board Suzaku. Publications of the Astronomical Society of Japan, 59, 23–33. https://doi.org/10.1093/pasj/59.sp1.S23

Laštovička, J. (2015). Comment on “Long-term trends in thermospheric neutral temperatures and density above Millstone Hill” by W. L. Oliver et al. Journal of Geophysical Research: Space Physics, 120, 2347–2349. https://doi.org/10.1002/2014JA020864

Laštovička, J. (2017). A review of recent progress in trends in the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 163, 2–13. https://doi.org/10.1016/j.jastp.2017.03.009

Laštovička, J., & Jelínek, Š. (2019). Problems in calculating long-term trends in the upper atmosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 189, 80–86. https://doi.org/10.1016/j.jastp.2019.04.011

López-Puertas, M., Funke, B., Jurado-Navarro, Á. A., García-Comas, M., Gardini, A., Boone, C. D., et al. (2017). Validation of the MIPAS CO2 volume mixing ratio in the mesosphere and lower thermosphere and comparison with WACCM simulations. Journal of Geophysical Research: Atmospheres, 122, 8345–8366. https://doi.org/10.1002/2017JD026805

Lübken, F.-J., Baumgarten, G., & Berger, U. (2021). Long term trends of mesospheric ice layers: A model study. Journal of Atmospheric and Solar-Terrestrial Physics, 214, 105378. https://doi.org/10.1016/j.jastp.2020.105378

Lübken, F. J., Berger, U., & Baumgarten, G. (2013). Temperature trends in the midlatitude summer mesosphere. Journal of Geophysical Research: Atmospheres, 118, 13347–13360. https://doi.org/10.1002/2013JD020576

Madsen, K. K., Reynolds, S., Harrison, F., An, H., Boggs, S., Christensen, F. E., et al. (2015). Broadband X-ray imaging and spectroscopy of the Crab Nebula and Pulsar with NuSTAR. The Astrophysical Journal, 801(1), 66. https://doi.org/10.1088/0004-637X/801/1/66

Maillard Barras, E., Haefele, A., Nguyen, L., Tummon, F., Ball, W. T., Rozanov, E. V., et al. (2020). Study of the dependence of long-term strat- ospheric ozone trends on local solar time. Atmospheric Chemistry and Physics, 20(14), 8453–8471. https://doi.org/10.5194/acp-20-8453-2020 Makishima, K., Tashiro, M., Ebisawa, K., Ezawa, H., Fukazawa, Y., Gunji, S., et al. (1996). In-orbit performance of the gas imaging spectrometer onboard ASCA. Publications of the Astronomical Society of Japan, 48, 171–189. https://doi.org/10.1093/pasj/48.2.171

Manabe, S., & Wetherald, R. T. (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. Journal of the Atmospheric Sciences, 24(3), 241–259. https://doi.org/10.1175/1520-0469(1967)024〈0241:TEOTAW〉2.0.CO;2

Matsuno, T. (1971). A dynamical model of the stratospheric sudden warming. Journal of the Atmospheric Sciences, 28(8), 1479–1494. https:// doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2

Meier, R. R., Picone, J. M., Drob, D., Bishop, J., Emmert, J. T., Lean, J. L., et al. (2015). Remote Sensing of Earth’s Limb by TIMED/GUVI: Retrieval of thermospheric composition and temperature. Earth and Space Science, 2, 1–37. https://doi.org/10.1002/2014EA000035

Mitsuda, K., Bautz, M., Inoue, H., Kelley, R. L., Koyama, K., Kunieda, H., et al. (2007). The X-ray observatory Suzaku. Publications of the Astronomical Society of Japan, 59, S1–S7. https://doi.org/10.1093/pasj/59.sp1.S1

Nakazawa, K., Sato, G., Kokubun, M., Enoto, T., Fukazawa, Y., Hagino, K., et al. (2018). Hard x-ray imager onboard Hitomi (ASTRO-H). Jour- nal of Astronomical Telescopes, Instruments, and Systems, 4(2), 021410. https://doi.org/10.1117/1.JATIS.4.2.021410

Norton, R. B., & Warnock, J. M. (1968). Seasonal variation of molecular oxygen near 100 kilometers. Journal of Geophysical Research, 73(17), 5798–5800. https://doi.org/10.1029/JA073i017p05798

Ohashi, T., Ebisawa, K., Fukazawa, Y., Hiyoshi, K., Horii, M., Ikebe, Y., et al. (1996). The gas imaging spectrometer on board ASCA. Publica- tions of the Astronomical Society of Japan, 48, 157–170. https://doi.org/10.1093/pasj/48.2.157

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12(85), 2825–2830.

Perrone, L., & Mikhailov, A. V. (2019). Long-term variations of June column atomic oxygen abundance in the upper atmosphere inferred from ionospheric observations. Journal of Geophysical Research: Space Physics, 124, 6305–6312. https://doi.org/10.1029/2019JA026818

Peters, D. H. W., & Entzian, G. (2015). Long-term variability of 50 years of standard phase-height measurement at Kühlungsborn, Mecklenburg, Germany. Advances in Space Research, 55(7), 1764–1774. https://doi.org/10.1016/j.asr.2015.01.021

Peters, D. H. W., Entzian, G., & Keckhut, P. (2017). Mesospheric temperature trends derived from standard phase-height measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 163, 23–30. https://doi.org/10.1016/j.jastp.2017.04.007

Pokhunkov, A. A., Rybin, V. V., & Tulinov, G. F. (2009). Quantitative characteristics of long-term changes in parameters of the upper atmosphere of the Earth over the 1966–1992 period. Cosmic Research, 47(6), 480–490. https://doi.org/10.1134/S0010952509060045

Qian, L., Marsh, D., Merkel, A., Solomon, S. C., & Roble, R. G. (2013). Effect of trends of middle atmosphere gases on the mesosphere and thermosphere. Journal of Geophysical Research: Space Physics, 118, 3846–3855. https://doi.org/10.1002/jgra.50354

Rezac, L., Yue, J., Yongxiao, J., Russell, J. M., Garcia, R., López-Puertas, M., & Mlynczak, M. G. (2018). On long-term SABER CO2 trends and effects due to nonuniform space and time sampling. Journal of Geophysical Research: Space Physics, 123, 7958–7967. https://doi. org/10.1029/2018JA025892

Roble, R. G., & Dickinson, R. E. (1989). How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere? Geophysical Research Letters, 16(12), 1441–1444. https://doi.org/10.1029/GL016i012p01441

Russell, J. M., Mlynczak, M. G., Gordley, L. L., Tansock, J. J., & Esplin, R. W. (1999). Overview of the SABER experiment and preliminary calibration results. In A. M. Larar (Ed.), Optical spectroscopic techniques and instrumentation for atmospheric and space research iii (Vol. 3756, pp. 277–288). https://doi.org/10.1117/12.366382

Sato, K., Yasui, R., & Miyoshi, Y. (2018). The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part I: Contribu- tions of different wave types and in situ generation of Rossby waves. Journal of the Atmospheric Sciences, 75(10), 3613–3633. https://doi. org/10.1175/JAS-D-17-0336.1

Solomon, S. C., Liu, H.-L., Marsh, D. R., McInerney, J. M., Qian, L., & Vitt, F. M. (2019). Whole atmosphere climate change: Dependence on solar activity. Journal of Geophysical Research: Space Physics, 124, 3799–3809. https://doi.org/10.1029/2019JA026678

Solomon, S. C., Qian, L., & Roble, R. G. (2015). New 3-D simulations of climate change in the thermosphere. Journal of Geophysical Research: Space Physics, 120, 2183–2193. https://doi.org/10.1002/2014JA020886

Stevens, M. H., Randall, C. E., Carstens, J. N., Siskind, D. E., McCormack, J. P., Kuhl, D. D., & Dhadly, M. S. (2022). Northern mid-latitude mesospheric cloud frequencies observed by AIM/CIPS: Interannual variability driven by space traffic. Earth and Space Science, 9, e2022EA002217. https://doi.org/10.1029/2022EA002217

Stober, G., Matthias, V., Brown, P., & Chau, J. L. (2014). Neutral density variation from specular meteor echo observations spanning one solar cycle. Geophysical Research Letters, 41, 6919–6925. https://doi.org/10.1002/2014GL061273

Strelnikov, B., Rapp, M., & Lübken, F. (2013). In-situ density measurements in the mesosphere/lower thermosphere region with the TOTAL and CONE instruments. In An introduction to space instrumentation (pp. 1–11). https://doi.org/10.5047/aisi.001

Takahashi, T., Abe, K., Endo, M., Endo, Y., Ezoe, Y., Fukazawa, Y., et al. (2007). Hard X-ray detector (HXD) on board Suzaku. Publications of the Astronomical Society of Japan, 59, 35–51. https://doi.org/10.1093/pasj/59.sp1.S35

Takahashi, T., Kokubun, M., Mitsuda, K., Kelley, R. L., Ohashi, T., Aharonian, F., et al. (2018). Hitomi (ASTRO-H) X-ray astronomy satellite. Journal of Astronomical Telescopes, Instruments, and Systems, 4(2), 021402. https://doi.org/10.1117/1.JATIS.4.2.021402

Tanaka, Y., Inoue, H., & Holt, S. S. (1994). The X-ray astronomy satellite ASCA. Publications of the Astronomical Society of Japan, 46, L37–L41. Tomikawa, Y., Sato, K., Watanabe, S., Kawatani, Y., Miyazaki, K., & Takahashi, M. (2012). Growth of planetary waves and the formation of an elevated stratopause after a major stratospheric sudden warming in a T213L256 GCM. Journal of Geophysical Research, 117, D16101. https://doi.org/10.1029/2011JD017243

Verner, D. A., Ferland, G. J., Korista, K. T., & Yakovlev, D. G. (1996). Atomic data for Astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. The Astrophysical Journal, 465, 487. https://doi.org/10.1086/177435

Wang, R., Liu, J., & Zhang, Q. M. (2009). Propagation errors analysis of TLE data. Advances in Space Research, 43(7), 1065–1069. https://doi. org/10.1016/j.asr.2008.11.017

Wilhelm, S., Stober, G., & Brown, P. (2019). Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes. Annales Geophysicae, 37(5), 851–875. https://doi.org/10.5194/angeo-37-851-2019

Wilms, J., Allen, A., & McCray, R. (2000). On the absorption of X-rays in the interstellar medium. The Astrophysical Journal, 542(2), 914–924. https://doi.org/10.1086/317016

Wilson-Hodge, C. A., Cherry, M. L., Case, G. L., Baumgartner, W. H., Beklen, E., Narayana Bhat, P., et al. (2011). When a standard candle flickers. The Astrophysical Journal Letters, 727(2), L40. https://doi.org/10.1088/2041-8205/727/2/L40

Wood, K. S., Ray, P. S., Wolff, M. T., Gendreau, K., Arzoumanian, Z., Mitchell, J. W., & Winternitz, L. M. B. (2020). Satellite navigation using X-ray pulsars and horizon crossings of X-ray stars. Advances in the Astronautical Sciences AAS Guidance, Navigation, and Control 2020, 20, 124. Xu, X.-L., & Xiong, Y.-Q. (2018). Orbit error characteristic and distribution of TLE using CHAMP orbit data. Astrophysics and Space Science, 363(2), 31. https://doi.org/10.1007/s10509-018-3251-z

Yasui, R., Sato, K., & Miyoshi, Y. (2018). The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part II: The in situ generation of gravity waves. Journal of the Atmospheric Sciences, 75(10), 3635–3651. https://doi.org/10.1175/JAS-D-17-0337.1

Yu, D., Li, H., Li, B., Ge, M., Tuo, Y., Li, X., et al. (2022a). Measurement of the vertical atmospheric density profile from the X-ray Earth occul- tation of the Crab Nebula with Insight-HXMT. arXiv:2204.09674.

Yu, D., Li, H., Li, B., Ge, M., Tuo, Y., Li, X., et al. (2022b). New method for Earth neutral atmospheric density retrieval based on energy spectrum fitting during occultation with LE/Insight-HXMT. Advances in Space Research, 69(9), 3426–3434. https://doi.org/10.1016/j.asr.2022.02.030

Yuan, T., Solomon, S. C., She, C. Y., Krueger, D. A., & Liu, H. L. (2019). The long-term trends of nocturnal mesopause temperature and altitude revealed by Na lidar observations between 1990 and 2018 at midlatitude. Journal of Geophysical Research, 124, 5970–5980. https://doi. org/10.1029/2018JD029828

Yue, J., Russell, J., Gan, Q., Wang, T., Rong, P., Garcia, R., & Mlynczak, M. (2019). Increasing water vapor in the stratosphere and mesosphere after 2002. Geophysical Research Letters, 46, 13452–13460. https://doi.org/10.1029/2019GL084973

Zhang, S.-R., Holt, J. M., Erickson, P. J., Goncharenko, L. P., Nicolls, M. J., McCready, M., & Kelly, J. (2016). Ionospheric ion tempera- ture climate and upper atmospheric long-term cooling. Journal of Geophysical Research: Space Physics, 121, 8951–8968. https://doi. org/10.1002/2016JA022971

参考文献をもっと見る