リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Assessing the performance of a Northeast Asia Japan-centered 3-D ionosphere specification technique during the 2015 St. Patrick’s day geomagnetic storm」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Assessing the performance of a Northeast Asia Japan-centered 3-D ionosphere specification technique during the 2015 St. Patrick’s day geomagnetic storm

Ssessanga, Nicholas Yamamoto, Mamoru Saito, Susumu 京都大学 DOI:10.1186/s40623-021-01447-8

2021

概要

This paper demonstrates and assesses the capability of the advanced three-dimensional (3-D) ionosphere tomography technique, during severe conditions. The study area is northeast Asia and quasi-Japan-centred. Reconstructions are based on total electron content data from a dense ground-based global navigation satellite system receiver network and parameters from operational ionosondes. We used observations from ionosondes, Swarm satellites and radio occultation (RO) to assess the 3-D picture. Specifically, we focus on St. Patrick’s day geomagnetic storm (17–19 March 2015), the most intense in solar cycle 24. During this event, the energy ingested into the ionosphere resulted in Dst and Kp and reaching values  ~  − 223 nT and 8, respectively, and the region of interest, the East Asian sector, was characterized by a  ~ 60% reduction in electron densities. Results show that the reconstructed densities follow the physical dynamics previously discussed in earlier publications about storm events. Moreover, even when ionosonde data were not available, the technique could still provide a consistent picture of the ionosphere vertical structure. Furthermore, analyses show that there is a profound agreement between the RO profiles/in-situ densities and the reconstructions. Therefore, the technique is a potential candidate for applications that are sensitive to ionospheric corrections.

この論文で使われている画像

参考文献

Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res Space Phys 12010:9023–9037. https://doi.org/10.1002/ 2015JA021629

Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2):418–429. https://doi. org/10.1002/2016SW001593

Buonsanto MJ (1999) Ionospheric storms —a review. Space Sci Rev 88(3):563– 601. https://doi.org/10.1023/A:1005107532631

Bust GS, Mitchell CN (2008) History, current state, and future directions of ionospheric imaging. Rev Geophys. https://doi.org/10.1029/2006RG0002 12

Bust GS, Coco D, Makela JJ (2000) Combined ionospheric campaign 1: iono- spheric tomography and GPS total electron count (TEC) depletions. Geo- phys Res Lett 27(18):2849–2852. https://doi.org/10.1029/2000GL000053

Chen CH, Saito A, Lin CH, Yamamoto M, Suzuki S, Seemala GK (2016) Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography. Earth Planets Space 68:32. https://doi.org/ 10.1186/s40623-016-0412-6

Cherniak I, Zakharenkova I, Redmon RJ (2015) Dynamics of the high-latitude ionospheric irregularities during the 17 March 2015 St. Patrick’s Day storm: ground-based GPS measurements. Space Weather 13(9):585–597

Eastwood JP, Biffis E, Hapgood MA, Green L, Bisi MM, Bentley RD, Wicks R, McKinnell LA, Gibbs M, Burnett C (2017) The economic impact of space weather: where do we stand? Risk Anal 37(2):206–218. https://doi.org/10. 1111/risa.12765

Fremouw EJ, Secan JA, Howe BM (1992) Application of stochastic inverse theory to ionospheric tomography. Radio Sci 27(5):721–732. https://doi. org/10.1029/92RS00515

Fuller-Rowell T, Codrescu M, Moffffett R, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Space Phys 99(A3):3893–3914. https://doi.org/10.1029/93JA02015

Garcia-Fernandez M, Hernandez-Pajares M, Juan M, Sanz J (2003) Improve- ment of ionospheric electron density estimation with GPSMET occulta- tions using Abel inversion and VTEC information. J Geophys Res Space Phys 108(A9):1338. https://doi.org/10.1029/2003JA009952

Howe BM, Runciman K, Secan JA (1998) Tomography of the ionosphere: four-dimensional simulations. Radio Sci 33(1):109–128. https://doi.org/10. 1029/97RS02615

Jakowski N, Mayer C, Hoque MM, Wilken V (2011) Total electron content mod- els and their use in ionosphere monitoring. Radio Sci. https://doi.org/10. 1029/2010RS004620

Jakowski N, Béniguel Y, De Franceschi G, Pajares MH, Jacobsen KS, Stanislaw- ska I, Tomasik L, Warnant R, Wautelet G (2012) Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J Space Weather Space Clim 2:A22. https://doi.org/10.1051/swsc/2012022

Kelly MA, Comberiate JM, Miller ES, Paxton LJ (2014) Progress toward forecast- ing of space weather effects on UHF SATCOM after Operation Anaconda. Space Weather 12(10):601–611. https://doi.org/10.1002/2014SW001081

Kutiev I, Otsuka Y, Saito A, Watanabe S (2006) GPS observations of post-storm TEC enhancements at low latitudes. Earth Planets Space 58(11):1479– 1486. https://doi.org/10.1186/BF03352647

Ma G, Maruyama T (2003) Derivation of TEC and estimation of instrumental biases from GEONET in Japan. Ann Geophys 21(10):2083–2093. https:// doi.org/10.5194/angeo-21-2083-2003

Ma XF, Maruyama T, Ma G, Takeda T (2005) Three-dimensional ionospheric tomography using observation data of GPS ground receivers and iono- sonde by neural network. J Geophys Res Space Phys 110:A5. https://doi. org/10.1029/2004JA010797

Maruyama T, Ma G, Nakamura M (2004) Signature of TEC storm on 6 Novem- ber 2001 derived from dense GPS receiver network and ionosonde chain over Japan. J Geophys Res 109:A10302. https://doi.org/10.1029/2004J A010451

Mitchell CN, Spencer PS (2003) A three-dimensional time-dependent algo- rithm for ionospheric imaging using GPS. Ann Geophys 46(4):687–696. https://doi.org/10.4401/ag-4373

Nava B, Coisson P, Radicella SM (2008) A new version of the NeQuick iono- sphere electron density model. J Atmos Solar Terr Phys 70(15):1856–1862. https://doi.org/10.1016/j.jastp.2008.01.015

Nava B, Rodríguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orué Y, Radicella SM, Amory-Mazaudier C, Fleury R (2016) Middle- and low- latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys 121(4):3421–3438. https://doi.org/10. 1002/2015JA022299

Nose M, Iyemori T, Sugiura M, Kamei T (2015) Geomagnetic Dst index. World Data Cent Geomagn Kyoto. https://doi.org/10.17593/14515-74000

Ohashi M, Hattori T, Kubo Y, Sugimoto S (2013) Multi-layer ionospheric VTEC estimation for GNSS positioning. Trans Inst Syst Control Inf Eng 26(1):16–24

Okoh DI, McKinnell L-A, Cilliers PJ (2010) Developing an ionospheric map for South Africa. Ann Geophys 28(7):1431–1439. https://doi.org/10.5194/ angeo-28-1431-2010

Olsen N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, Chulliat A, Doornbos E, da Encarnao JT, Hamilton B, Hulot G, van Ijssel J, Kuvshinov A, Lesur V, Lhr H, Macmillan S, Maus S, Noja M, Olsen PEH, Park J, Plank G, Pthe C, Rauberg J, Ritter P, Rother M, Sabaka TJ, Schachtschneider R, Sirol O, Stolle C, Thbault E, Thomson AW, Tffner-Clausen P, Velmsk L, Vigneron J, Visser P (2013) The Swarm satellite constellation application and research facility (SCARF) and Swarm data products. Earth Planets Space 65(11):1189–1200. https://doi.org/10.5047/eps.2013.07.001

Otsuka Y, Ogawa T, Saito A, Tsugawa T, Fukao S, Miyazaki S (2002) A new tech- nique for mapping of total electron content using GPS network in Japan. Earth Planets Space 54(1):63–70. https://doi.org/10.1186/BF03352422

Prölss GW (1995) Ionospheric F-region storms. In: Volland H (ed) Handbook of atmospheric electrodynamics, 2nd edn. CRC Press, Boca Raton

Raymund TD, Franke SJ, Yeh KC (1994) Ionospheric tomography: its limitations and reconstruction methods. J Atmos Terr Phys 56(5):637–657. https:// doi.org/10.1016/0021-9169(94)90104-X

Rius A, Ruffini G, Cucurull L (1997) Improving the vertical resolution of ionospheric tomography with GPS occultations. Geophys Res Lett 24(18):2291–2294. https://doi.org/10.1029/97GL52283

Rovira-Garcia A, Ibanez-Segura D, Orus-Perez R, Juan JM, Sanz J, Gonzalez-Cas- ado G (2020) Assessing the quality of ionospheric models through GNSS positioning error: methodology and results. GPS Solut 24(1):1–12. https:// doi.org/10.1007/s10291-019-0918-z

Saito A, Miyazaki S, Fukao S (1998) High resolution mapping of TEC per- turbations with the GSI GPS network over Japan. Geophys Res Lett 25(16):3079–3082. https://doi.org/10.1029/98GL52361

Saito S, Suzuki S, Yamamoto M, Saito A, Chen CH (2017) Real-time ionosphere monitoring by three-dimensional tomography over Japan. Navig J Inst Navig 64(4):495–504. https://doi.org/10.1002/navi.213

Saito S, Yamamoto M, Saito A, Chen, C. H., (2019) Real-time 3-D Ionospheric tomography and its validation by the MU radar. In: 2019 URSI Asia–Pacific radio science conference (AP-RASC). IEEE (pp 1–1). https://doi.org/10.23919/URSIAP-RASC.2019.8738382

Schmidt M, Bilitza D, Shum C, Zeilhofer C (2008) Regional 4D modeling of the ionospheric electron density. Adv Space Res 42(4):782–790. https://doi. org/10.1016/j.asr.2007.02.050

Seemala GK, Yamamoto M, Saito A, Chen C-H (2014) Three-dimensional GPS ionospheric tomography over Japan using constrained least squares. J Geophys Res Space Phys 119(4):3044–3052. https://doi.org/10.1002/ 2013JA019582

Shiokawa K, Otsuka Y, Ogawa T, Kawamura S, Yamamoto M, Fukao S, Nakamura T, Tsuda T, Balan N, Igarashi K, Lu G (2003) Thermospheric wind during a storm-time large-scale traveling ionospheric disturbance. J Geophys Res Space Phys 108(A12):1423. https://doi.org/10.1029/2003JA010001

Ssessanga N, Kim YH, Kim E (2015) Vertical structure of medium-scale traveling ionospheric disturbances (MSTIDs). Geophys Res Lett 42(21):9156–9165. https://doi.org/10.1002/2015GL066093

Ssessanga N, Yamamoto M, Saito S, Saito A, Nishioka M (2021) Complementing regional ground GNSS-STEC computerized ionospheric tomography (CIT) with ionosonde data assimilation. GPS Solut 25:93. https://doi.org/10.1007/s10291-021-01133-y

Stankov SM, Warnant R (2009) Ionospheric slab thickness-analysis, modelling and monitoring. Adv Space Res 44(11):1295–1303. https://doi.org/10. 1016/j.asr.2009.07.010

Tsagouri I, Belehaki A, Moraitis G, Mavromichalaki H (2000) Positive and nega- tive ionospheric disturbances at middle latitudes during geomagnetic storms. Geophys Res Lett 27(21):3579–3582. https://doi.org/10.1029/ 2000GL003743

Tsai L-C, Liu C, Tsai W, Liu C (2002) Tomographic imaging of the ionosphere using the GPS/MET and NNSS data. J Atmos Solar Terr Phys 64(18):2003– 2011. https://doi.org/10.1016/S1364-6826(02)00218-3

Wu X, Hu X, Gong X, Zhang X, Wang X (2009) Analysis of the inversion error of ionospheric occultation. GPS Solut 13(3):231–239. https://doi.org/10. 1007/s10291-008-0116-x

Yasyukevich Y, Astafyeva E, Padokhin A, Ivanova V, Syrovatskii S, Podlesnyi A (2018) The 6 September 2017 X-class solar flares and their impacts on the ionosphere, GNSS, and HF radio wave propagation. Space Weather 16(8):1013–1027. https://doi.org/10.1029/2018SW001932

Yeh KC, Raymund TD (1991) Limitations of ionospheric imaging by tomogra- phy. Radio Sci 26(6):1361–1380. https://doi.org/10.1029/91RS01873

Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo Y-H (2010) Error analysis of Abel retrieved electron density profiles from radio- occultation measurements. Ann Geophys 28(1):217–222. https://doi.org/ 10.5194/angeo-28-217-2010

参考文献をもっと見る