リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Possible Occurrence of Superconductivity by the π-flux Dirac String Formation Due to Spin-Twisting Itinerant Motion of Electrons」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Possible Occurrence of Superconductivity by the π-flux Dirac String Formation Due to Spin-Twisting Itinerant Motion of Electrons

小泉, 裕康 筑波大学

2021.10.19

概要

We show that the Rashba spin-orbit interaction causes spin-twisting itinerant motion of electrons in metals and realizes the quantized cyclotron orbits of conduction electrons without an external magnetic field. From the view point of the Berry connection, the cause of this quantization is the appearance of a non-trivial Berry connection Afic=−ℏ2e∇χ ( χ is an angular variable with period 2π ) that generates π flux (in the units of ℏ=1,e=1,c=1 ) inside the nodal singularities of the wave function (a “Dirac string”) along the centers of spin-twisting. Since it has been shown in our previous work that the collective mode of ∇χ is stabilized by the electron-pairing and generates supercurrent, the π -flux Dirac string created by the spin-twisting itinerant motion will be stabilized by the electron-pairing and produce supercurrent.

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Dirac, P. Quantised singularities in the electromagnetic field. Proc. R. Soc. 1931, 133, 60.

Weinberg, S. Superconductivity for Particular Theorists Prog. Theor. Phys. Suppl. 1986, 86, 43. [CrossRef]

Bardeen, J.; Cooper, L.N.; Schrieffer, J.R. Theory of Superconductivity. Phys. Rev. 1957, 108, 1175. [CrossRef]

Bardeen, J. Theory of the Meissner Effect in Superconductors. Phys. Rev. 1955, 97, 1724. [CrossRef]

Anderson, P.W. Considerations on the Flow of Superfluid Helium Rev. Mod. Phys. 1966, 38, 298. [CrossRef]

Anderson, P.W. Basic Notions of Condensed Matter Physics;The Benjamin/Cummings Publishing Company,

Inc.: San Francisco, CA, USA, 1984.

Bednorz, J.G.; Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 1986,

64, 189. [CrossRef]

Anderson, P.W. The Theory of Superconductivity in the High-Tc Cuprates; Princeton Univ. Press: Princeton, NJ,

USA, 1997.

Tranquada, J.M.; Woo, H.; Perring, T.G.; Goka, H.; Gu, G.D.; Xu, G.; Fujita, M.; Yamada, K. Quantum

magnetic excitations from stripes in copper oxide superconductors. Nature 2004, 429, 534. [CrossRef]

Dean, M.P.M.; Dellea, G.; Springell, R.S.; Yakhou-Harris, F.; Kummer, K.; Brookes, N.B.; Liu, X.; Sun, Y.-J.;

Strle, J.; Schmitt, T.; et al. Persistence of magnetic excitations in La2− x Srx CuO4 from the undoped insulator

to the heavily overdoped non-superconducting metal. Nat. Mater. 2013, 12, 1019. [CrossRef]

Sebastian, S.E. The Experiments by Y.-T.Hsu et al. Indicates the Existence of about 1nm Sized Vortices in a

very Strong (45 T) Magnetic Field. Unpublished Result Reported at SNS2019, Tokyo, Japan, 2020.

Emery, V.J.; Kivelson, S.A. Importance of phase fluctuations in superconductors with small superfluid

density. Nature 1995, 374, 434 [CrossRef]

Okazaki, A.; Wakaura, H.; Koizumi, H.; Ghantous, M.A.; Tachiki, M. Superconducting Transition

Temperature of the Hole-Doped Cuprate as the Stabilization Temperature of Supercurrent Loops Generated

by Spin-Twisting Itinerant Motion of Electrons. J. Supercond. Nov. Magn. 2015, 28, 3221. [CrossRef]

Morisaki, T.; Wakaura, H.; Koizumi, H. Effect of Rashba Spin–Orbit Interaction on the Stability of

Spin-Vortex-Induced Loop Current in Hole-Doped Cuprate Superconductors: A Scenario for the Appearance

of Magnetic Field Enhanced Charge Order and Fermi Surface Reconstruction. J. Phys. Soc. Jpn. 2017,

86, 104710. [CrossRef]

Bianconi, A.; Saini, N.L.; Lanzara, A.; Missori, M.; Rossetti, T.; Oyanagi, H.; Yamaguchi, H.; Oka, K.; Ito, T.

Determination of the Local Lattice Distortions in the CuO2 Plane of La1.85 Sr0.15 CuO4 . Phys. Rev. Lett. 1996,

76, 3412. [CrossRef] [PubMed]

Müller, K.A. Hand Book of High-Tempearture Superconductivity; Schrieffer, J.R., Brooks, J.S., Eds.; Springer:

Berlin, Germany, 2007; p. 1.

Miyaki, S.; Makoshi, K.; Koizumi, H. Two-Copper-Atom Units Induce a Pseudo Jahn–Teller Polaron in

Hole-Doped Cuprate Superconductors. J. Phys. Soc. Jpn. 2008, 77, 034702. [CrossRef]

Zhang, C.J.; Oyanagi, H. Local lattice instability and superconductivity in La1.85 Sr0.15 Cu1− x Mx O4 (M=Mn,

Ni, and Co). Phys. Rev. B 2009, 79, 064521. [CrossRef]

Berry, M.V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A 1984, 391, 45.

Bohm, A.; Mostafazadeh, A.; Koizumi, H.; Niu, Q.; Zwanziger, J. The Geometric Phase in Quantum Systems;

Springer: Berlin, Germany, 2003.

Koizumi, H. Spin-vortex Superconductivity. J. Supercond. Nov. Magn. 2011, 24, 1997. [CrossRef]

Koizumi, H.; Hidekata, R.; Okazaki, A.; Tachiki, M. Persistent current generation by the spin-vortex formation

in cuprate with the single-valuedness constraint on the conduction electron wave functions. J. Supercond.

Nov. Magn. 2014, 27, 121. [CrossRef]

Koizumi, H.; Okazaki, A.; Ghantous, M.A.; Tachiki, M. Supercurrent flow through the network of

spin-vortetices in cuprates. J. Supercond. Nov. Magn. 2014, 27, 2435. [CrossRef]

Koizumi, H.; Tachiki, M. Supercurrent Generation by Spin-twisting Itinerant Motion of Electrons:

Re-derivation of the ac Josephson Effect Including the Current Flow Through the Leads Connected to

Josephson Junction. J. Supercond. Nov. Magn. 2015, 28, 61. [CrossRef]

Hidekata, R.; Koizumi, H. Spin-vortices and spin-vortex-induced loop currents in the pseudogap phase of

cuprates. J. Supercond. Nov. Magn. 2011, 24, 2253. [CrossRef]

Symmetry 2020, 12, 776

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

16 of 16

Xia, J.; Schemm, E.; Deutscher, G.; Kivelson, S.A.; Bonn, D.A.; Hardy, W.H.; Liang, R.; Siemons, W.; Koster, G.;

Fejer, M.M.; et al. Polar Kerr-Effect Measurements of the High-Temperature YBa2 Cu3 O6+ x Superconductor:

Evidence for Broken Symmetry near the Pseudogap Temperature. Phys. Rev. Lett. 2008, 100, 127002.

[CrossRef] [PubMed]

LeBoeuf, D.; Doiron-Leyraud, N.; Levallois, J.; Daou, R.; Bonnemaison, J.-B.; Hussey, N.E.; Balicas, L.;

Ramshaw, R.J.; Liang, R.; Bonn, D.A.; et al. Electron pockets in the Fermi surface of hole-doped high-Tc

superconductors. Nature 2007, 450, 533. [CrossRef] [PubMed]

Wang, Y.; Li, L.; Naughton, M.J.; Gu, G.D.; Uchida, S.; Ong, N.P. Field-Enhanced Diamagnetism in the

Pseudogap State of the Cuprate Bi2 Sr2 CaCu2 O8+δ Superconductor in an Intense Magnetic Field. Phys. Rev.

Lett. 2005, 95, 247002. [CrossRef] [PubMed]

Damascelli, A.; Hussain, Z.; Shen, Z.-X. Angle-resolved photoemission studies of the cuprate

superconductors. Rev. Mod. Phys. 2003, 75, 473. [CrossRef]

Koizumi, H. Explanation of Superfluidity Using the Berry Connection for Many-Body Wave Functions. J.

Supercond. Nov. Magn. 2020. [CrossRef]

Bogoliubov, N.N. A New Method in the Theory of Superconductivity. I. Sov. Phys. JETP 1958, 34, 41.

[CrossRef]

de Gennes, P.G. Superconductivity of Metals and Alloys; W. A. Benjamin, Inc.: New York, NY, USA, 1966.

Kane, C.L.; Mele, E.J. Z2 Topological Order and the Quantum Spin Hall Effect. Phys. Rev. Lett. 2005,

95, 146802. [CrossRef] [PubMed]

Dirac, P.A.M. Section 70. In Principles of Quantum Mechanics, 4th ed.; Oxford Univ. Press: Oxford, UK, 1958.

Rashba, E.I. Properties of semiconductors with an extremum loop .1. Cyclotron and combinational resonance

in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 1960, 2, 1109.

Gutzwiller, M.C. Chaos in Classical and Quantum Mechanics; Springer: Berlin, Germany, 1990.

Sundaram, G.; Niu, Q. Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and

Berry-phase effects. Phys Rev. B 1999, 59, 14915. [CrossRef]

Dirac, P.A.M. Section 31. In Principles of Quantum Mechanics, 4th ed.; Oxford Univ. Press: Oxford, UK, 1958.

Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 79, 361. [CrossRef]

Kerman, A.K.; Koonin, S.E. Hamiltonian formulation of time-dependent variational principles for the

many-body system. Ann. Phys. 1976, 100, 332. [CrossRef]

Onsager, L. Interpretation of the de Haas-van Alphen effect. Phil. Mag. Ser. 1952, 43, 1006. [CrossRef]

London, F. Superfluids; Wiley: New York, NY, USA, 1950; Voume 1.

Josephson, B.D. Possible new effects in superconductive tunnelling. Phys. Lett. 1962, 1, 251. [CrossRef]

Ambegaokar, V.; Baratoff, A. Tunneling Between Superconductors. Phys. Rev. Lett. 1963, 10, 486. [CrossRef]

Aumentado, J.; Keller, M.W.; Martinis, J.M.; Devoret, M.H. Nonequilibrium Quasiparticles and 2e Periodicity

in Single-Cooper-Pair Transistors. Phys. Rev. Lett. 2004, 92, 066802. [CrossRef]

Zurek, W.H. Decoherence and the Transition from Quantum to Classical-Revisited. Los Alamos Sci. 2002,

27, 86.

c 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る