リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spin- and angle-resolved photoemission spectroscopy study of spin-momentum-layer locking in centrosymmetric BiOI」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spin- and angle-resolved photoemission spectroscopy study of spin-momentum-layer locking in centrosymmetric BiOI

Zhang Ke 広島大学

2021.09.17

概要

The electron spin in nonmagnetic crystal is degenerated under the protection of time-reversal
and space inversion symmetries. The spin-orbit coupling (SOC), however, lifts the spin
degeneracy if the space inversion symmetry is broken, termed as the Rashba or Dresselhaus spin
splitting. Recently novel types of the Rashba spin splitting and/or Dresselhaus spin splitting have
been predicted and confirmed in the centrosymmetric crystals, which is fundamentally derived
from the asymmetry of the specific atomic site, rather than the asymmetry of the global crystal
space group. Given the spin polarization or spin texture exists on a sector (quasi-2D sublattice)
as well as its inversion partner sector in the unit cell, it is called the hidden spin polarization
(HSP), as there is no net spin polarization for the whole crystal because spin polarization
direction on a sector is anti-parallel to that on the inversion partner sector. The HSP on the sector,
however, may be reduced via the interaction with its inversion partner, impeding potential
applications of this effect.
Due to the compensation of the spin of the opposite sectors, it is not trivial at all to retain
highly polarized spin texture of a given local sector. In order to obtain sizable net polarization in
each sector, apart from a strong SOC, one should minimize the compensation between the sectors
connected to the inversion symmetry point. A trivial strategy is to separate the opposite sectors
as far as possible, for example, inserting a thick slab between the opposite sectors. ...

この論文で使われている画像

参考文献

[1]

S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

[2]

I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

[3]

H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M. Johnson, Science 325, 1515

(2009).

[4]

A. Manchon, H. C. Koo, J. Nitta, S. Frolov, and R. Duine, Nat. Mater. 14, 871 (2015).

[5]

A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos, Nature 539, 509 (2016).

[6]

X. Lin, W. Yang, K. L. Wang, and W. Zhao, Nature Electronics 2, 274 (2019).

[7]

Q. Liu, X. Zhang, J. A. Waugh, D. S. Dessau, and A. Zunger, Phys. Rev. B 94, 125207

(2016).

[8]

J.-W. Luo, G. Bester, and A. Zunger, Phys. Rev. Lett. 102, 056405 (2009).

[9]

R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems

(Springer Science & Business Media, 2003), Vol. 191, Book-Winkler.

[10]

G. Dresselhaus, Phys. Rev. 100, 580 (1955).

[11]

E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).

[12]

Y. A. Bychkov and É. I. Rashba, JETP Lett. 39, 78 (1984).

[13] Y. A. Bychkov and E. I. Rashba, Journal of Physics C: Solid State Physics 17, 6039

(1984).

[14]

Y. A. Bychkov and V. M. n. E. J. Z. E. T. F. Rashba, Zh. Eksp. Teor. Fiz 98, 726 (1990).

[15]

D. Di Sante, P. Barone, R. Bertacco, and S. Picozzi, Adv. Mater. 25, 509 (2013).

[16]

K. Ishizaka et al., Nat. Mater. 10, 521 (2011).

[17]

X. Zhang, Q. Liu, J.-W. Luo, A. J. Freeman, and A. Zunger, Nat. Phys. 10, 387 (2014).

[18] L. Yuan, Q. Liu, X. Zhang, J.-W. Luo, S.-S. Li, and A. Zunger, Nat. Commun. 10, 906

(2019).

[19] Z. Yingjie, L. Pengfei, S. Hongyi, Z. Shixuan, X. Hu, and L. Qihang, Chin. Phys. Lett.

37, 87105 (2020).

[20]

J. M. Riley et al., Nat. Phys. 10, 835 (2014).

[21]

E. Razzoli et al., Phys. Rev. Lett. 118, 086402 (2017).

[22]

D. Santos-Cottin et al., Nat. Commun. 7, 11258 (2016).

[23]

W. Yao et al., Nat. Commun. 8, 14216 (2017).

[24]

K. Gotlieb et al., Science 362, 1271 (2018).

13

[25]

X. Chen et al., Nat. Mater. 18, 931 (2019).

[26] P.-H. Lin, B.-Y. Yang, M.-H. Tsai, P.-C. Chen, K.-F. Huang, H.-H. Lin, and C.-H. Lai,

Nat. Mater. 18, 335 (2019).

[27]

J. Zhou et al., Sci. Adv. 5, eaau6696 (2019).

[28]

J. H. Ryoo and C.-H. Park, Npg Asia Materials 9, e382 (2017).

[29] R. Gautier, J. M. Klingsporn, R. P. Van Duyne, and K. R. Poeppelmeier, Nat. Mater. 15,

591 (2016).

[30]

Q. Liu, X. Zhang, and A. Zunger, Phys. Rev. Lett. 114, 087402 (2015).

[31] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J.

Sinova, and T. Jungwirth, Phys. Rev. Lett. 113, 157201 (2014).

[32]

P. Wadley et al., Science 351, 587 (2016).

[33]

Q. Liu and A. Zunger, Physical Review X 7, 021019 (2017).

[34] W. C. Yu, X. Zhou, F.-C. Chuang, S. A. Yang, H. Lin, and A. Bansil, Physical Review

Materials 2, 051201 (2018).

[35]

T. Yang et al., Nat. Mater. 19, 27 (2020).

[36]

Q.-F. Liang, J. Zhou, R. Yu, Z. Wang, and H. Weng, Phys. Rev. B 93, 085427 (2016).

[37]

T. Bzdušek, Q. Wu, A. Rüegg, M. Sigrist, and A. A. Soluyanov, Nature 538, 75 (2016).

[38]

L. M. Schoop et al., Nat. Commun. 7, 1 (2016).

[39]

A. Topp et al., Physical Review X 7, 041073 (2017).

[40]

M. Arumugam and M. Y. Choi, J. Ind. Eng. Chem. 81, 237 (2020).

[41]

X. Zhang, L. Zhang, T. Xie, and D. Wang, J. Phys. Chem. C 113, 7371 (2009).

[42]

J. Cao, B. Xu, B. Luo, H. Lin, and S. Chen, Catal. Commun. 13, 63 (2011).

[43] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annu. Rev. Condens. Matter

Phys. 5, 57 (2014).

[44]

H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).

[45]

C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008 (2010).

[46]

Y.-F. Chang, Int. J. Nano Mater. Sci. 2, 9 (2013).

[47]

D. Basov, R. Averitt, and D. Hsieh, Nat. Mater. 16, 1077 (2017).

[48]

Y. Tokura, M. Kawasaki, and N. Nagaosa, Nat. Phys. 13, 1056 (2017).

[49]

M. Sato and Y. Ando, Rep. Prog. Phys. 80, 076501 (2017).

[50]

S. Haindl et al., Rep. Prog. Phys. 77, 046502 (2014).

[51]

C. Trang et al., Nat. Commun. 11, 1 (2020).

14

[52]

H. Hertz, Annalen der Physik 267, 983 (1887).

[53]

A. Einstein, Annalen der Physik 322, 132 (1905).

[54]

C. Nordling, E. Sokolowski, and K. Siegbahn, Phys. Rev. 105, 1676 (1957).

[55] D. H. Bilderback, P. Elleaume, and E. Weckert, J. Phys. B: At., Mol. Opt. Phys. 38, S773

(2005).

[56]

C. Kunz, J. Phys.: Condens. Matter 13, 7499 (2001).

[57]

J. He and Z. Zhao, Natl. Sci. Rev. 1, 171 (2014).

[58]

A. Balerna and S. Mobilio, in Synchrotron radiation (Springer, 2015), pp. 3.

[59]

M. Ogawa et al., Rev. Sci. Instrum. 83, 023109 (2012).

[60]

X. Zhu et al., Rev. Sci. Instrum. 86, 083902 (2015).

[61] Spin- and Angle-Resolved Photoelectron Spectroscopy, (Scienta

https://scientaomicron.com/en/system-solutions/electron-spectroscopy/ARPESLab/technology/Spin-ARPES/37 (Accessed March 1st 2021).

Omicron)

[62] 角

(Wikipedia)

https://zh.wikipedia.org/wiki/%E8%A7%92%E5%88%86%E8%BE%A8%E5%85%89%E9%9

B%BB%E5%AD%90%E8%83%BD%E8%AD%9C%E5%AD%B8 (Accessed March 1st 2021).

[63] S. hufner, Photoelectron Spectroscopy: Principles and Application (Springer-Verlag

Berlin Heidelberg GmbH, 2003).

[64]

R. Comin and A. Damascelli, in Strongly Correlated Systems (Springer, 2015), pp. 31.

[65] S. Suga and A. Sekiyama, Photoelectron spectroscopy: bulk and surface electronic

structures. 2014 (Springer-Verlag Berlin Heidelberg, 2014).

[66]

https://www.cond-mat.de/events/correl14/talks/sing.pdf.

[67]

L. Hedin and J. Lee, J. Electron Spectrosc. Relat. Phenom. 124, 289 (2002).

[68]

J. W. Gadzuk and M. Šunjić, Phys. Rev. B 12, 524 (1975).

[69]

J. Stöhr, R. Jaeger, and J. Rehr, Phys. Rev. Lett. 51, 821 (1983).

[70]

T. A. Carlson and M. O. Krause, Phys. Rev. 140, A1057 (1965).

[71]

A. Reimer et al., Phys. Rev. Lett. 57, 1707 (1986).

[72] J. Hietarinta, B. Grammaticos, B. a. Dorizzi, and A. Ramani, Phys. Rev. Lett. 53, 1707

(1984).

[73]

J. Schirmer, M. Braunstein, and V. McKoy, Phys. Rev. A 44, 5762 (1991).

[74]

G. Bandarage and R. R. Lucchese, Phys. Rev. A 47, 1989 (1993).

[75]

M. Randeria et al., Phys. Rev. Lett. 74, 4951 (1995).

15

[76] J. Koralek, J. Douglas, N. Plumb, J. Griffith, S. Cundiff, H. Kapteyn, M. Murnane, and

D. Dessau, Rev. Sci. Instrum. 78, 053905 (2007).

[77]

J. Koralek et al., Phys. Rev. Lett. 96, 017005 (2006).

[78]

M. Seah, Surf. Interface Anal. 1, 86 (1979).

[79]

G. Sawatzky, Nature 342, 480 (1989).

[80]

H. Eskes, A. M. Oleś, M. B. Meinders, and W. Stephan, Phys. Rev. B 50, 17980 (1994).

[81]

A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

A. A. Abrikosov, L. P. Gorʹkov, and I. E. Dzi︠a︡loshinskiĭ, Quantum field theoretical

[82]

methods in statistical physics (Pergamon, 1965), Vol. 4.

[83]

H. Ehrenreich, F. Seitz, and D. Turnbull, (1973).

[84] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle systems (Courier

Corporation, 2012).

[85]

G. D. Mahan, Many-particle physics (Springer Science & Business Media, 2013).

[86] V. L. Bonch-Bruevich and S. V. Tyablikov, The Green function method in statistical

mechanics (Courier Dover Publications, 2015).

[87]

85.

K. Shimada, in Very High Resolution Photoelectron Spectroscopy (Springer, 2007), pp.

[88]

J. Hermanson, Solid State Commun. 22, 9 (1977).

[89]

H. Iwasawa et al., J. Synchrotron Rad. 24, 836 (2017).

[90] L. Chernysheva, G. Gribakin, V. Ivanov, and M. Y. Kuchiev, J. Phys. B: At., Mol. Opt.

Phys. 21, L419 (1988).

[91] R. D. Mattuck, A guide to Feynman diagrams in the many-body problem (Courier

Corporation, 1992).

[92]

R. d. L. Kronig, Josa 12, 547 (1926).

[93] H. A. Kramers, in Atti Cong. Intern. Fisica (Transactions of Volta Centenary Congress)

Como1927), pp. 545.

[94]

T. Valla, A. Fedorov, P. Johnson, and S. Hulbert, Phys. Rev. Lett. 83, 2085 (1999).

[95] J. Schäfer, D. Schrupp, E. Rotenberg, K. Rossnagel, H. Koh, P. Blaha, and R. Claessen,

Phys. Rev. Lett. 92, 097205 (2004).

[96]

M. Repoux, Surf. Interface Anal. 18, 567 (1992).

[97]

S. Tougaard, Surf. Interface Anal. 11, 453 (1988).

[98]

S. Tougaard and I. Chorkendorff, Phys. Rev. B 35, 6570 (1987).

[99]

H. Froitzheim, Topics in Current Physics 4 (1977).

16

[100] M. P. Seah and W. A. Dench, Surf. Interface Anal. 1, 2 (1979).

[101] P. J. Feibelman and D. Eastman, Phys. Rev. B 10, 4932 (1974).

[102] G. Borstel, Applied Physics A 38, 193 (1985).

[103] F. Reinert and S. Hüfner, New J. Phys. 7, 97 (2005).

[104] T. Okuda, J. Phys.: Condens. Matter 29, 483001 (2017).

[105] T. J. Gay and F. Dunning, Rev. Sci. Instrum. 63, 1635 (1992).

[106] Sherman Function, (Wikepeida)

(Accessed March. 11th 2021).

https://en.wikipedia.org/wiki/Sherman_function

[107] A. Takayama, High-Resolution Spin-Resolved Photoemission Spectrometer and the

Rashba Effect in Bismuth Thin Films (Springer, 2014).

[108] J. Kessler, Polarized electrons (Springer Science & Business Media, 2013), Vol. 1.

[109] A. Gellrich and J. Kessler, Phys. Rev. A 43, 204 (1991).

[110] C. Etz, A. Ernst, S. Ostanin, W. Hergert, and I. Mertig, Verhandlungen der Deutschen

Physikalischen Gesellschaft (2010).

[111] K. Legg, F. Jona, D. Jepsen, and P. Marcus, Phys. Rev. B 16, 5271 (1977).

[112] E. Tamura, R. Feder, J. Krewer, R. E. Kirby, E. Kisker, E. L. Garwin, and F. K. King,

Solid State Commun. 55, 543 (1985).

[113] R. Jungblut, C. Roth, F. Hillebrecht, and E. Kisker, Surf. Sci. 269, 615 (1992).

[114] T. Okuda, Y. Takeichi, Y. Maeda, A. Harasawa, I. Matsuda, T. Kinoshita, and A.

Kakizaki, Rev. Sci. Instrum. 79, 123117 (2008).

[115] Synchrotron Radiation, (Wikipedia) https://en.wikipedia.org/wiki/Synchrotron_radiation

(Accessed March 14th 2021).

[116] Undulator, (Wikepedia) https://en.wikipedia.org/wiki/Undulator (Accessed March 16th

2021).

[117] K. Yoshida et al., in KEK Proc. (NATIONAL LABORATORY FOR HIGH ENERGY

PHYSICS, 1998), pp. 653.

[118] S. Matsuba, K. Goto, and K. Kawase, in 8th Int. Particle Accelerator Conf.(IPAC'17),

Copenhagen, Denmark, 14â 19 May, 2017 (JACOW, Geneva, Switzerland, 2017), pp. 2672.

[119] K. Shimada, in Institutes in Asia Pacific (AAPPS BULLETIN, 2020), p. 3.

[120] S. Souma, T. Sato, T. Takahashi, and P. Baltzer, Rev. Sci. Instrum. 78, 123104 (2007).

[121] G. Liu et al., Rev. Sci. Instrum. 79, 023105 (2008).

[122] T. Kiss et al., Rev. Sci. Instrum. 79, 023106 (2008).

[123] J. C. Rivière and S. Myhra, Handbook of surface and interface analysis: methods for

problem-solving (CRC press, 2009).

17

[124] E. Plum, X.-X. Liu, V. Fedotov, Y. Chen, D. Tsai, and N. Zheludev, Phys. Rev. Lett. 102,

113902 (2009).

[125] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).

[126] K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, Science 344, 1489 (2014).

[127] M. Gehlmann et al., Scientific Reports 6, 26197 (2016).

[128] J. Tu et al., Phys. Rev. B 101, 035102 (2020).

[129] S.-L. Wu et al., Nat. Commun. 8, 1919 (2017).

[130] C.-X. Liu, Phys. Rev. Lett. 118, 087001 (2017).

[131] P. A. M. Dirac, The principles of quantum mechanics (Fourth Edition) (Oxford

University Press, 1958), The International Series of Monographs on Physics.

[132] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L.

Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science 294, 1488 (2001).

[133] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

[134] B. Partoens, Nat. Phys. 10, 333 (2014).

[135] X. Wang, Doctoral thesis, Hiroshima University, 2020.

[136] G. D. M. S. Dresselhaus, A. Jorio, Group theory: application to the physics of condensed

matter (Springer, 2008).

[137] T. Hahn, U. Shmueli, and J. W. Arthur, International tables for crystallography (Reidel

Dordrecht, 1983), Vol. 1.

[138] Introduction

to

Computational

Materials,

workshop/comput_mat.pdf (Accessed March 28 2021).

https://www.vasp.at/vasp-

[139] E. K. Gross and R. M. Dreizler, Density functional theory (Springer Science & Business

Media, 2013), Vol. 337.

[140] J. Callaway and N. March, Solid State Physics 38, 135 (1984).

[141] J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533 (1996).

[142] J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, Phys. Rev. Lett. 82, 2544 (1999).

[143] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

[144] M. Cococcioni and S. De Gironcoli, Phys. Rev. B 71, 035105 (2005).

[145] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).

[146] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

[147] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[148] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[149] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

18

[150] X. Zhang, Z. Ai, F. Jia, and L. Zhang, J. Phys. Chem. C 112, 747 (2008).

[151] J. Jiang, X. Zhang, P. Sun, and L. Zhang, J. Phys. Chem. C 115, 20555 (2011).

[152] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).

[153] W. A. Harrison, Electronic structure and the properties of solids: the physics of the

chemical bond (Courier Corporation, 2012).

[154] C. Kittel, Quantum theory of solids (John Wiley & Sons, 1987).

[155] P. Schmidt, M. Binnewies, R. Glaum, and M. Schmidt, Chemical vapor transport

reactions–methods, materials, modeling (InTech Rijeka, Croatia, 2013).

[156] M. Binnewies, M. Schmidt, and P. Schmidt, Z. Anorg. Allg. Chem. 643, 1295 (2017).

[157] M. A. Gondal, C. Xiaofeng, and M. A. Dastageer, Novel bismuth-oxyhalide-based

materials and their applications (Springer, 2017).

[158] B. V. Crist, XPS reports 1 (2007).

[159] J. Rumble Jr, D. Bickham, and C. Powell, Surf. Interface Anal. 19, 241 (1992).

[160] C. J. Powell, A. Jablonski, I. Tilinin, S. Tanuma, and D. R. Penn, J. Electron Spectrosc.

Relat. Phenom. 98, 1 (1999).

[161] A. M. Jones, H. Yu, J. S. Ross, P. Klement, N. J. Ghimire, J. Yan, D. G. Mandrus, W.

Yao, and X. Xu, Nat. Phys. 10, 130 (2014).

[162] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, Nat. Phys. 10, 343 (2014).

[163] X. Xi, Z. Wang, W. Zhao, J.-H. Park, K. T. Law, H. Berger, L. Forró, J. Shan, and K. F.

Mak, Nat. Phys. 12, 139 (2016).

[164] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).

[165] Y. Cao et al., Nat. Phys. 9, 499 (2013).

[166] A. T. Paxton, NIC Series 42, 145 (2009).

19

Acknowledgement

The three years of doctoral course study at Hiroshima University is an unforgettable

wonderful time in my life. I would like to give special appreciation to my supervisor Prof. Kenya

Shimada who provided a valuable opportunity of studying in such a great environment that I can

concentrate to progress this project. Three years ago, it was the first time I came to Japan. When

I stepped into the Hiroshima synchrotron radiation center, I felt infinite nervous and uneasy. But

after getting along with my supervisor Prof. Shimada, I started to calm down, because I my

supervisor Prof. Shimada is so approachable and amiable. More importantly, my supervisor Prof.

Shimada is so rigorous in academic research, which has given me a very important influence. In

my study and research, Prof. Kenya Shimada always patiently explains to me in detail to ensure

that I can understand; in my daily life, my supervisor Prof. Shimada also gave me a lot of care

and support, which make me feel endless warmth. The rigorous academic research style and

profound professional knowledge of my supervisor Prof. Shimada is a role model for me to learn

forever.

I would like to express my sincere grateful for the kind, patient, and intellectual guidance

from Prof. Taichi Okuda, Prof. Koji Miyamoto, Prof. Shiv Kumar, Prof. Eike F. Schwier, Prof.

Masashi Arita, Prof. Munisa, Prof. Akio Kimura, Prof. Hirofumi Namatame for the kind support

and professional advice during my Ph.D. study at Hiroshima University. Discussions with they

often prompted me to have a deeper understanding of the experimental data.

Also, I would like to thank Dr. Shilong Wu, Dr. Mingtian Zheng, Dr. Xiaoxiao Wang, Mr.

Wumiti Mansuer, who give me a lot of encouragement and share the experience and something

interesting in their life. I am grateful to Mr. Yamamoto, Miss Namatame, Mr. Miyai, Ms. Hou,

Mr Amit, Mr. ishiba with whom I have had the pleasure to work and study together. Besides, I

am also very grateful for all the kind support and help from Ms. Shinno and Ms. Shimokubo in

Hiroshima Synchrotron Radiation Center and the staffs in student support office and department

of physical science office.

Special thanks to our collaborators Prof. Chaoyu Chen, Prof. Qihang Liu, Prof. Chang Liu,

Mr. Shixuan Zhao, Dr. Xiaoming Ma, Mr. Zhanyang Hao, Ms. Yujie Hao in the Southern

University of Science and Technology, for providing the high-quality single crystal samples and

extensive professional theoretical calculations.

20

I would like to thanks to the generous economic supports from Graduate School of Science,

Graduate School of Advanced Science and Engineering in Hiroshima university and Japan

Student Services Organization (JASSO).

Nobody has been more important to me in the pursuit of my Ph.D. degree than my family. I

wish to thank my beloved parents and my wife for their tremendous spiritual and financial

supports.

10 May 2021

Ke Zhang

21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る