リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Serum amyloid alpha 1-2 are not required for liver inflammation in the 4T1 murine breast cancer model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Serum amyloid alpha 1-2 are not required for liver inflammation in the 4T1 murine breast cancer model

He, Chenfeng 京都大学 DOI:10.14989/doctor.k24800

2023.05.23

概要

Inflammation in host organs is a major phenomenon caused by advanced, incurable solid
cancers (1–4). Advanced solid cancers induce the proliferation of particular immune cell
types, expression of inflammatory cytokines, and migration of immune cells to particular
organs such as the liver. ...

この論文で使われている画像

参考文献

1. Baazim H, Antonio-Herrera L, Bergthaler A. The interplay of immunology and

cachexia in infection and cancer. Nat Rev Immunol (2022) 22:309–21. doi: 10.1038/

s41577-021-00624-w

20. Mizuno R, Hojo H, Takahashi M, Kashio S, Enya S, Nakao M, et al. Remote solid

cancers rewire hepatic nitrogen metabolism via host nicotinamide-n-methyltransferase.

Nat Commun (2022) 13:3346. doi: 10.1038/s41467-022-30926-z

2. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev

Cancer (2021) 21:345–59. doi: 10.1038/s41568-021-00347-z

21. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al.

PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately

downregulated in human diabetes. Nat Genet (2003) 34:267–73. doi: 10.1038/ng1180

3. Biswas AK, Acharyya S. Understanding cachexia in the context of metastatic

progression. Nat Rev Cancer (2020) 20:274–84. doi: 10.1038/s41568-020-0251-4

22. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene

set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression

profiles. Proc Natl Acad Sci U.S.A. (2005) 102:15545–50. doi: 10.1073/pnas.0506580102

4. Allen BM, Hiam KJ, Burnett CE, Venida A, DeBarge R, Tenvooren I, et al. Systemic

dysfunction and plasticity of the immune macroenvironment in cancer models. Nat Med

(2020) 26:1125–34. doi: 10.1038/s41591-020-0892-6

23. Flint TR, Janowitz T, Connell CM, Roberts EW, Denton AE, Coll AP, et al. Tumorinduced IL-6 reprograms host metabolism to suppress anti-tumor immunity. Cell Metab

(2016) 24:672–84. doi: 10.1016/j.cmet.2016.10.010

5. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, et al. Definition

and classification of cancer cachexia: an international consensus. Lancet Oncol (2011)

12:489–95. doi: 10.1016/S1470-2045(10)70218-7

24. Miao YR, Xia M, Luo M, Luo T, Yang M, Guo AY. ImmuCellAI-mouse: a tool for

comprehensive prediction of mouse immune cell abundance and immune microenvironment

depiction. Bioinformatics (2021) 38(3):785–791. doi: 10.1093/bioinformatics/btab711

6. Stephens NA, Skipworth RJ, Fearon KC. Cachexia, survival and the acute phase

response. Curr Opin Support Palliat Care (2008) 2:267–74. doi: 10.1097/

SPC.0b013e3283186be2

25. Miao YR, Zhang Q, Lei Q, Luo M, Xie GY, Wang H, et al. ImmuCellAI: A unique

method for comprehensive T-cell subsets abundance prediction and its application in

cancer immunotherapy. Adv Sci (Weinh) (2020) 7:1902880. doi: 10.1002/advs.201902880

7. Petruzzelli M, Wagner EF. Mechanisms of metabolic dysfunction in cancerassociated cachexia. Genes Dev (2016) 30:489–501. doi: 10.1101/gad.276733.115

26. Hojo MA, Masuda K, Hojo H, Nagahata Y, Yasuda K, Ohara D, et al. Identification

of a genomic enhancer that enforces proper apoptosis induction in thymic negative

selection. Nat Commun (2019) 10:2603. doi: 10.1038/s41467-019-10525-1

8. Zhang Q, Song MM, Zhang X, Ding JS, Ruan GT, Zhang XW, et al. Association of

systemic inflammation with survival in patients with cancer cachexia: results from a

multicentre cohort study. J Cachexia Sarcopenia Muscle (2021) 12:1466–76. doi: 10.1002/

jcsm.12761

27. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol (2014) 15:602–11.

doi: 10.1038/ni.2921

9. Sack GHJr. Serum amyloid a - a review. Mol Med (2018) 24:46. doi: 10.1186/s10020018-0047-0

28. Lee JY, Hall JA, Kroehling L, Wu L, Najar T, Nguyen HH, et al. Serum amyloid a

proteins induce pathogenic Th17 cells and promote inflammatory disease. Cell (2020)

180:79–91 e16. doi: 10.1016/j.cell.2019.11.026

10. Lai Y, Li Y, Gao L. Serum amyloid a protein in cancer prognosis: a meta-analysis

and systematic review. Transl Cancer Res (2021) 10:2255–64. doi: 10.21037/tcr-20-3417

29. Kano A. Tumor cell secretion of soluble factor(s) for specific immunosuppression.

Sci Rep (2015) 5:8913. doi: 10.1038/srep08913

11. Wu JL, Su TH, Chen PJ, Chen YR. Acute-phase serum amyloid a for early

detection of hepatocellular carcinoma in cirrhotic patients with low AFP level. Sci Rep

(2022) 12:5799. doi: 10.1038/s41598-022-09713-9

30. Enya S, Kawakami K, Suzuki Y, Kawaoka S. A novel zebrafish intestinal tumor

model reveals a role for cyp7a1-dependent tumor-liver crosstalk in causing adverse effects

on the host. Dis Model Mech 11 (2018) 11(8)::dmm032383. doi: 10.1242/dmm.032383

12. Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ. Acute phase reaction and acute

phase proteins. J Zhejiang Univ Sci B (2005) 6:1045–56. doi: 10.1631/jzus.2005.B1045

31. Amend SR, Valkenburg KC, Pienta KJ. Murine hind limb long bone dissection and

bone marrow isolation. J Vis Exp (2016). doi: 10.3791/53936

13. Lee JW, Stone ML, Porrett PM, Thomas SK, Komar CA, Li JH, et al. Hepatocytes

direct the formation of a pro-metastatic niche in the liver. Nature (2019) 567:249–52. doi:

10.1038/s41586-019-1004-y

32. Pedersen KB, Williams A, Watt J, Ronis MJ. Improved method for isolating highquality RNA from mouse bone with RNAlater at room temperature. Bone Rep (2019)

11:100211. doi: 10.1016/j.bonr.2019.100211

14. Hojo H, Enya S, Arai M, Suzuki Y, Nojiri T, Kangawa K, et al. Remote

reprogramming of hepatic circadian transcriptome by breast cancer. Oncotarget (2017)

8:34128–40. doi: 10.18632/oncotarget.16699

33. Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor.

Bioinformatics (2018) 34:i884–90. doi: 10.1093/bioinformatics/bty560

15. Furlaneto CJ, Campa A. A novel function of serum amyloid a: a potent stimulus for

the release of tumor necrosis factor-alpha, interleukin-1beta, and interleukin-8 by human

blood neutrophil. Biochem Biophys Res Commun (2000) 268:405–8. doi: 10.1006/

bbrc.2000.2143

34. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment

and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol (2019) 37:907–15.

doi: 10.1038/s41587-019-0201-4

16. Sun L, Zhou H, Zhu Z, Yan Q, Wang L, Liang Q, et al. Ex vivo and in vitro effect of

serum amyloid a in the induction of macrophage M2 markers and efferocytosis of

apoptotic neutrophils. J Immunol (2015) 194:4891–900. doi: 10.4049/jimmunol.1402164

35. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve

years of SAMtools and BCFtools. Gigascience 10 (2021). doi: 10.1093/gigascience/giab008

36. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics (2014) 30:923–30. doi:

10.1093/bioinformatics/btt656

17. Gaiser AK, Bauer S, Ruez S, Holzmann K, Fandrich M , Syrovets T, et al. Serum

amyloid A1 induces classically activated macrophages: A role for enhanced fibril

formation. Front Immunol (2021) 12:691155. doi: 10.3389/fimmu.2021.691155

18. Patel H, Fellowes R, Coade S, Woo P. Human serum amyloid a has cytokine-like

properties. Scand J Immunol (1998) 48:410–8. doi: 10.1046/j.1365-3083.1998.00394.x

37. Wang E, Kawaoka S, Yu M, Shi J, Ni T, Yang W, et al. Histone H2B ubiquitin ligase

RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci U.S.A. (2013)

110:3901–6. doi: 10.1073/pnas.1301045110

19. Hahn A, Kny M, Pablo-Tortola C, Todiras M, Willenbrock M, Schmidt S, et al.

Serum amyloid A1 mediates myotube atrophy via toll-like receptors. J Cachexia

Sarcopenia Muscle (2020) 11:103–19. doi: 10.1002/jcsm.12491

38. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics (2010)

26:139–40. doi: 10.1093/bioinformatics/btp616

Frontiers in Immunology

10

frontiersin.org

Figure S1: The basic characteristics of Saa1-2

(A) A DNA sequence alignment of Saa1 (accession number: CCDS21284.1) and Saa2 (accession

number: CCDS21285.1). The differences in their sequences are highlighted in red.

(B) The correlations of the mRNA abundances between Saa1-2 and representative neutrophil

related genes. n = 4.

10

20

30

40

50

60

70

Saa1 ATGAAGCTAC TCACCAGCCT GGTCTTCTGC TCCCTGCTCC TGGGAGTCTG CCATGGAGGG TTTTTTTCAT

Saa2 ATGAAGCTAC TCACCAGCCT GGTCTTCTGC TCCCTGCTCC TGGGAGTCTG CCATGGAGGG TTTTTTTCAT

71

80

90

100

110

120

130

140

Saa1 TTGTTCACGA GGCTTTCCAA GGGGCTGGGG ACATGTGGCG AGCCTACACT GACATGAAGG AAGCTAACTG

Saa2 TTATTGGGGA GGCTTTCCAA GGGGCTGGAG ACATGTGGCG AGCCTACACT GACATGAAGG AAGCTGGCTG

141

150

160

170

180

190

200

210

Saa1 GAAAAACTCA GACAAATACT TCCATGCTCG GGGGAACTAT GATGCTGCTC AAAGGGGTCC CGGGGGAGTC

Saa2 GAAAGATGGA GACAAATACT TCCATGCTCG GGGGAACTAT GATGCTGCCC AAAGGGGTCC CGGGGGAGTC

211

220

230

240

250

260

270

280

Saa1 TGGGCTGCTG AGAAAATCAG TGATGGAAGA GAGGCCTTTC AGGAATTCTT CGGCAGAGGA CATGAGGACA

Saa2 TGGGCTGCTG AGAAAATCAG TGATGCAAGA GAGAGCTTTC AGGAATTCTT CGGCAGAGGA CACGAGGACA

281

290

300

310

320

330

340

350

Saa1 CCATTGCTGA CCAGGAAGCC AACAGACATG GCCGCAGTGG CAAAGACCCC AATTACTACA GACCTCCTGG

Saa2 CCATGGCTGA CCAGGAAGCC AACAGACATG GCCGCAGTGG CAAAGACCCC AATTACTACA GACCTCCTGG

351

360

Saa1 ACTGCCTGAC AAATACTGA 369

Saa2 ACTGCCTGCC AAATACTGA 369

Lcn2 vs Saa1

Ifitm1 vs Saa1

RPKM(x102)

12

1.5

20

1.0

10

R2=0.943

p=2.91x10-2

20

40

60

RPKM(x102)

0.5

R2=0.907

p=4.76x10-2

80

20

40

60

RPKM(x102)

80

R2=0.907

p=4.77x10-2

Ifitm1 vs Saa2

Lcn2 vs Saa2

40

60

RPKM(x102)

80

12

1.5

20

20

Lrg1 vs Saa2

2.0

30

RPKM(x102)

Lrg1 vs Saa1

2.0

30

1.0

10

R2=0.907

p=4.75x10-2

20

40

RPKM(x102)

60

0.5

R2=0.825

p=9.17x10-2

20

40

RPKM(x102)

60

R2=0.962

p=1.93x10-2

20

40

RPKM(x102)

60

Figure S2: Western blot analysis of SAA1-2 proteins in the liver

Western blot analysis for SAA1-2 in the livers of sham and 4T1-bearing mice in WT and Saa1-2

KO. Recombinant SAA1 protein (2948-SA: R&D systems, MN, USA) is included as a positive

control.

(kDa)

15

10

WT

Sham

4T1

KO

Sham 4T1

nt

A1 bin

SA com

re

Figure S3: qPCR validations of the RNA-seq experiments in the liver

(A) This figure supports Fig. 3A. Top10 differentially expressed gene names are labelled.

(B) Venn diagrams showing the number of differentially expressed genes in the livers of 4T1bearing WT and Saa1-2 KO mice.

(C) qPCR analysis of S100a8, Ly6g, Mpo, and Itgam (Cd11b) in the livers of sham and 4T1bearing mice in WT and Saa1-2 KO (pooled from the four independent 4T1 transplantation

experiments). Averaged fold change data normalized to the sham group in each genotype are

presented as the mean ± SEM. n.s., not significant, unpaired two-tailed Student’s t-test. n =

11 for the sham groups, n = 13 for 4T1-bearing WT mice, and n = 14 for 4T1-bearing Saa12 KO mice.

KO

WT

60

-log10(p_value)

150

100

40

50

20

-10

-5

10

-10

-5

10

log2(fold change (4T1/Sham))

Up-regulated genes

Down-regulated genes

WT

WT

356

1323

211

36

101

43

KO

KO

S100a8

Fold change

8000

Ly6g

n.s.

6000

400

Mpo

n.s.

Itgam (Cd11b)

n.s.

150

150

n.s.

300

4000

200

2000

100

Sham 4T1 Sham 4T1

WT

KO

100

100

50

50

Sham 4T1 Sham 4T1

WT

KO

Sham 4T1 Sham 4T1

WT

KO

Sham 4T1 Sham 4T1

WT

KO

Figure S4: Gating strategies in the flow cytometry experiments

250K

250K

200K

P1

150K

100K

150K

P2

100K

P2

50K

50K

Comp-APC-Cy7-A :: LiveDead

P1

FSC-W

SSC-A

200K

105

104

103

-103

50K

100K

150K

200K

250K

50K

100K

150K

200K

CD45+

-103

250K

105

104

105

105

Monocytes+Macrophages

104

CD11b+

10

CD11b

104

P3

103

P3

-103

-103

-103

103

104

Comp-PE-Cy7-A :: CD11b

105

Comp-APC-A :: F4_80

Neutrophils

Comp-FITC-A :: Ly6G

Comp-APC-Cy7-A :: LiveDead

CD45+

103

Comp-AmCyan-A :: CD45

FSC-H

105

104

103

-103

-103

103

104

Comp-PE-Cy7-A :: CD11b

105

-103

103

104

Comp-PE-Cy7-A :: CD11b

105

Figure S5: qPCR validations of the RNA-seq experiments in the bone marrow

(A) Venn diagrams showing the number of differentially expressed genes in the bone marrows of

4T1-bearing WT and Saa1-2 KO mice.

(B) qPCR analysis of Wfdc17, Lrg1, Ifitm1, and Saa3 in the bone marrows of sham and 4T1bearing mice in WT and Saa1-2 KO (pooled from the four independent 4T1 transplantation

experiments).

Data are normalized with 18s rRNA and are presented as the mean ± SEM. n.s., not significant,

unpaired two-tailed Student’s t-test. n = 11 for sham-treated WT mice, n = 14 for 4T1-bearing

WT mice, n = 9 for sham-treated WT mice, and n = 12 for 4T1-bearing Saa1-2 KO mice.

Up-regulated genes

WT

Down-regulated genes

WT

803

191

325

296

1082

436

KO

KO

Wfdc17

Fold change

500

Lrg1

n.s.

400

40

n.s.

30

300

20

200

10

100

Sham 4T1 Sham 4T1

Sham 4T1 Sham 4T1

WT

WT

KO

Ifitm1

Saa3

n.s.

Fold change

300

KO

8000

n.s.

6000

200

4000

100

2000

Sham 4T1 Sham 4T1

WT

KO

Sham 4T1 Sham 4T1

WT

KO

Figure S6: Saa3 is induced in the livers of 4T1-bearing mice even in the absence of Saa1-2

(A) qPCR analysis of Saa3 in the livers of sham and 4T1-bearing mice in WT and Saa1-2 KO

(pooled from the four independent 4T1 transplantation experiments). Averaged fold change

data normalized to the sham group in each genotype are presented as the mean ± SEM. n.s.,

not significant, unpaired two-tailed Student’s t-test. n = 11 for the sham groups, n = 13 for

4T1-bearing WT mice, and n = 14 for 4T1-bearing Saa1-2 KO mice.

(B) An amino acid sequence alignment of SAA1 (accession number: CCDS21284.1), SAA2

(accession number: CCDS21285.1) and SAA3 (accession number: CCDS21282.1).

Saa3

80

n.s.

Fold change

60

40

20

Sham

4T1

WT

Sham

4T1

KO

10

20

30

40

50

60

SAA1 MKLLTSLVFC SLLLGVCHGG FFSFVHEAFQ GAGDMWRAYT DMKEANWKNS DKYFHARGNY

SAA2 MKLLTSLVFC SLLLGVCHGG FFSF I GEAFQ GAGDMWRAYT DMKEAGWKDG DKYFHARGNY

SAA3 MKPSI AI I LC I L I LGVDSQR WVQFMKEAGQ GSRDMWRAYS DMKKANWKNS DKYFHARGNY

61

70

80

90

100

110

120

SAA1 DAAQRGPGGV WAAEKISDGR EAFQEFFGRG HEDTI ADQEA NRHGRSGKDP NYYRPPGLPD KY

SAA2 DAAQRGPGGV WAAEKISDAR ESFQEFFGRG HEDTMADQEA NRHGRSGKDP NYYRPPGLPA KY

SAA3 DAARRGPGGA WAAKVISDAR EAVQKFTGHG AEDSRADQFA NEWGRSGKDP NHFRPAGLPK ZY

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る