リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Deletion of IKKβ in activated fibroblasts promotes tumor progression in melanoma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Deletion of IKKβ in activated fibroblasts promotes tumor progression in melanoma

Zhang, Shuang 京都大学 DOI:10.14989/doctor.k24503

2023.03.23

概要

The tumor microenvironment (TME) is the internal environment of tumors that consists of stromal components, including
vascular endothelial cells, immune cells and fibroblasts [1,2]. Fibroblasts in the TME, namely, cancer-associated fibroblasts (CAFs),
are the most abundant cell type in the TME and play critical roles in
tumorigenesis and development [3,4]. Studies have indicated that
CAFs promote the survival and proliferation of tumor cells by
secreting a variety of growth factors [5,6] and promoting ECM
remodeling [7,8]. In addition, CAFs stimulate angiogenesis within
tumors and regulate the immune system [9,10].
CAFs are heterogeneous in origin and function, and they have
been divided into multiple subpopulations with different markers
[11,12]. For instance, Li et al. ...

この論文で使われている画像

参考文献

[1] D. Hanahan, L.M. Coussens, Accessories to the crime: functions of cells

recruited to the tumor microenvironment, Cancer Cell 21 (2012) 309e322,

https://doi.org/10.1016/j.ccr.2012.02.022.

[2] A. Casazza, G. Di Conza, M. Wenes, V. Finisguerra, S. Deschoemaeker,

M. Mazzone, Tumor stroma: a complexity dictated by the hypoxic tumor

microenvironment, Oncogene 33 (2014) 1743e1754, https://doi.org/10.1038/

onc.2013.121.

[3] R. Kalluri, The biology and function of fibroblasts in cancer, Nat. Rev. Cancer 16

(2016) 582e598, https://doi.org/10.1038/nrc.2016.73.

[4] R. Kalluri, M. Zeisberg, Fibroblasts in cancer, Nat. Rev. Cancer 6 (2006)

392e401, https://doi.org/10.1038/nrc1877.

[5] K.A. Gieniec, L.M. Butler, D.L. Worthley, S.L. Woods, Cancer-associated

fibroblasts-heroes or villains? Br. J. Cancer 121 (2019) 293e302, https://

doi.org/10.1038/s41416-019-0509-3.

[6] A. Roy, S.D. Li, Modifying the Tumor Microenvironment Using Nanoparticle

Therapeutics, vol. 8, Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2016,

pp. 891e908, https://doi.org/10.1002/wnan.1406.

[7] B. Erdogan, D.J. Webb, Cancer-associated fibroblasts modulate growth factor

signaling and extracellular matrix remodeling to regulate tumor metastasis,

Biochem. Soc. Trans. 45 (2017) 229e236, https://doi.org/10.1042/

BST20160387.

[8] A. Kuchnio, S. Moens, U. Bruning, K. Kuchnio, B. Cruys, B. Thienpont, M. Broux,

A.A. Ungureanu, R. Leite de Oliveira, F. Bruyere, H. Cuervo, A. Manderveld,

A. Carton, J.R. Hernandez-Fernaud, S. Zanivan, C. Bartic, J.M. Foidart, A. Noel,

S. Vinckier, D. Lambrechts, M. Dewerchin, M. Mazzone, P. Carmeliet, The

cancer cell oxygen sensor PHD2 promotes metastasis via activation of cancerassociated fibroblasts, Cell Rep. 12 (2015) 992e1005, https://doi.org/10.1016/

j.celrep.2015.07.010.

[9] F.T. Wang, W. Sun, J.T. Zhang, Y.Z. Fan, Cancer-associated fibroblast regulation

of tumor neo-angiogenesis as a therapeutic target in cancer, Oncol. Lett. 17

(2019) 3055e3065, https://doi.org/10.3892/ol.2019.9973.

[10] T. Liu, C. Han, S. Wang, P. Fang, Z. Ma, L. Xu, R. Yin, Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy, J. Hematol. Oncol.

12 (2019) 86, https://doi.org/10.1186/s13045-019-0770-1.

[11] T. Liu, L. Zhou, D. Li, T. Andl, Y. Zhang, Cancer-associated fibroblasts build and

secure the tumor microenvironment, Front. Cell Dev. Biol. 7 (2019) 60, https://

doi.org/10.3389/fcell.2019.00060.

[12] X. Geng, H. Chen, L. Zhao, J. Hu, W. Yang, G. Li, C. Cheng, Z. Zhao, T. Zhang, L. Li,

B. Sun, Cancer-associated fibroblast (CAF) heterogeneity and targeting therapy

of CAFs in pancreatic cancer, Front. Cell Dev. Biol. 9 (2021), 655152, https://

doi.org/10.3389/fcell.2021.655152.

[13] H. Li, E.T. Courtois, D. Sengupta, Y. Tan, K.H. Chen, J.J.L. Goh, S.L. Kong, C. Chua,

L.K. Hon, W.S. Tan, M. Wong, P.J. Choi, L.J.K. Wee, A.M. Hillmer, I.B. Tan,

P. Robson, S. Prabhakar, Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors, Nat.

Genet. 49 (2017) 708e718, https://doi.org/10.1038/ng.3818.

[14] Y. Akatsu, N. Takahashi, Y. Yoshimatsu, S. Kimuro, T. Muramatsu, A. Katsura,

N. Maishi, H.I. Suzuki, J. Inazawa, K. Hida, K. Miyazono, T. Watabe, Fibroblast

growth factor signals regulate transforming growth factor-beta-induced

endothelial-to-myofibroblast transition of tumor endothelial cells via Elk1,

Mol. Oncol. 13 (2019) 1706e1724, https://doi.org/10.1002/1878-0261.12504.

[15] M. Karin, M. Delhase, The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling, Semin. Immunol. 12 (2000) 85e98,

https://doi.org/10.1006/smim.2000.0210.

[16] Z.W. Li, W. Chu, Y. Hu, M. Delhase, T. Deerinck, M. Ellisman, R. Johnson,

M. Karin, The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear

factor kappaB activation and prevention of apoptosis, J. Exp. Med. 189 (1999)

1839e1845, https://doi.org/10.1084/jem.189.11.1839.

[17] A.S. Payne, L.A. Cornelius, The role of chemokines in melanoma tumor growth

and metastasis, J. Invest. Dermatol. 118 (2002) 915e922, https://doi.org/

10.1046/j.1523-1747.2002.01725.x.

[18] A. Richmond, Nf-kappa B, chemokine gene transcription and tumour growth,

Nat. Rev. Immunol. 2 (2002) 664e674, https://doi.org/10.1038/nri887.

[19] C.K. Pallangyo, P.K. Ziegler, F.R. Greten, IKKbeta acts as a tumor suppressor in

cancer-associated fibroblasts during intestinal tumorigenesis, J. Exp. Med. 212

(2015) 2253e2266, https://doi.org/10.1084/jem.20150576.

[20] V. Koliaraki, M. Pasparakis, G. Kollias, IKKbeta in intestinal mesenchymal cells

promotes initiation of colitis-associated cancer, J. Exp. Med. 212 (2015)

2235e2251, https://doi.org/10.1084/jem.20150542.

[21] E. Faggin, M. Puato, L. Zardo, R. Franch, C. Millino, F. Sarinella, P. Pauletto,

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

51

S. Sartore, A. Chiavegato, Smooth muscle-specific SM22 protein is expressed

in the adventitial cells of balloon-injured rabbit carotid artery, Arterioscler.

Thromb. Vasc. Biol. 19 (1999) 1393e1404, https://doi.org/10.1161/

01.atv.19.6.1393.

B. Aldeiri, U. Roostalu, A. Albertini, J. Wong, A. Morabito, G. Cossu, Transgelinexpressing myofibroblasts orchestrate ventral midline closure through

TGFbeta signalling, Development 144 (2017) 3336e3348, https://doi.org/

10.1242/dev.152843.

M.A. Scharenberg, B.E. Pippenger, R. Sack, D. Zingg, J. Ferralli, S. Schenk,

I. Martin, R. Chiquet-Ehrismann, TGF-beta-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms, J. Cell Sci. 127

(2014) 1079e1091, https://doi.org/10.1242/jcs.142075.

D.M. Dolivo, S.A. Larson, T. Dominko, FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in

human dermal fibroblasts, J. Dermatol. Sci. 88 (2017) 339e348, https://

doi.org/10.1016/j.jdermsci.2017.08.013.

S.J. Assinder, J.A. Stanton, P.D. Prasad, Transgelin: an actin-binding protein and

tumour suppressor, Int. J. Biochem. Cell Biol. 41 (2009) 482e486, https://

doi.org/10.1016/j.biocel.2008.02.011.

C.E. Rupert, T.Y. Kim, B.R. Choi, K.L.K. Coulombe, Human cardiac fibroblast

number and activation state modulate electromechanical function of hiPSCcardiomyocytes in engineered myocardium, Stem Cell. Int. (2020), 9363809,

https://doi.org/10.1155/2020/9363809, 2020.

J.L. Duband, M. Gimona, M. Scatena, S. Sartore, J.V. Small, Calponin and SM 22

as differentiation markers of smooth muscle: spatiotemporal distribution

during avian embryonic development, Differentiation 55 (1993) 1e11,

https://doi.org/10.1111/j.1432-0436.1993.tb00027.x.

I. Al-Huseini, N. Ashida, T. Kimura, Deletion of i?b-kinase b in smooth muscle

cells induces vascular calcification through b-catenin-runt-related transcription factor 2 signaling, J. Am. Heart Assoc. 7 (2018), https://doi.org/10.1161/

JAHA.117.007405.

A. Orimo, P.B. Gupta, D.C. Sgroi, F. Arenzana-Seisdedos, T. Delaunay, R. Naeem,

V.J. Carey, A.L. Richardson, R.A. Weinberg, Stromal fibroblasts present in

invasive human breast carcinomas promote tumor growth and angiogenesis

through elevated SDF-1/CXCL12 secretion, Cell 121 (2005) 335e348, https://

doi.org/10.1016/j.cell.2005.02.034.

M. Quante, S.P. Tu, H. Tomita, T. Gonda, S.S. Wang, S. Takashi, G.H. Baik,

W. Shibata, B. Diprete, K.S. Betz, R. Friedman, A. Varro, B. Tycko, T.C. Wang,

Bone marrow-derived myofibroblasts contribute to the mesenchymal stem

cell niche and promote tumor growth, Cancer Cell 19 (2011) 257e272,

https://doi.org/10.1016/j.ccr.2011.01.020.

C. Langner, G. Hutterer, T. Chromecki, S. Leibl, P. Rehak, R. Zigeuner, Tumor

necrosis as prognostic indicator in transitional cell carcinoma of the upper

urinary tract, J. Urol. 176 (2006) 910e913, https://doi.org/10.1016/

j.juro.2006.04.019. ; discussion 913-914.

J. Vakkila, M.T. Lotze, Inflammation and necrosis promote tumour growth,

Nat. Rev. Immunol. 4 (2004) 641e648, https://doi.org/10.1038/nri1415.

R.S. Wong, Apoptosis in cancer: from pathogenesis to treatment, J. Exp. Clin.

Cancer Res. 30 (2011) 87, https://doi.org/10.1186/1756-9966-30-87.

C.M. Pfeffer, A.T.K. Singh, Apoptosis: a target for anticancer therapy, Int. J. Mol.

Sci. 19 (2018), https://doi.org/10.3390/ijms19020448.

Y. Yamamura, N. Asai, A. Enomoto, T. Kato, S. Mii, Y. Kondo, K. Ushida, K. Niimi,

N. Tsunoda, M. Nagino, S. Ichihara, K. Furukawa, K. Maeda, T. Murohara,

M. Takahashi, Akt-Girdin signaling in cancer-associated fibroblasts contributes to tumor progression, Cancer Res. 75 (2015) 813e823, https://doi.org/

10.1158/0008-5472.CAN-14-1317.

J. Suh, D.H. Kim, Y.H. Lee, J.H. Jang, Y.J. Surh, Fibroblast growth factor-2,

derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling, Mol. Carcinog. 59

(2020) 1028e1040, https://doi.org/10.1002/mc.23233.

P. Gascard, T.D. Tlsty, Carcinoma-associated fibroblasts: orchestrating the

composition of malignancy, Genes Dev. 30 (2016) 1002e1019, https://doi.org/

10.1101/gad.279737.116.

S.V. Novitskiy, R. Zaynagetdinov, G. Vasiukov, S. Gutor, W. Han, A. Serezani,

A. Matafonov, L.A. Gleaves, T.P. Sherrill, V.V. Polosukhin, T.S. Blackwell, Gas6/

MerTK signaling is negatively regulated by NF-kappaB and supports lung

carcinogenesis, Oncotarget 10 (2019) 7031e7042, https://doi.org/10.18632/

oncotarget.27345.

D. Wang, L. Bi, J. Ran, L. Zhang, N. Xiao, X. Li, Gas6/Axl signaling pathway

promotes proliferation, migration and invasion and inhibits apoptosis in A549

cells, Exp. Ther. Med. 22 (2021) 1321, https://doi.org/10.3892/

etm.2021.10756.

E.F. Wagner, Cancer: fibroblasts for all seasons, Nature 530 (2016) 42e43,

https://doi.org/10.1038/530042a.

M. Futakuchi, K. Lami, Y. Tachibana, Y. Yamamoto, M. Furukawa, J. Fukuoka,

The effects of TGF-beta signaling on cancer cells and cancer stem cells in the

bone microenvironment, Int. J. Mol. Sci. 20 (2019), https://doi.org/10.3390/

ijms20205117.

F. Kottakis, C. Polytarchou, P. Foltopoulou, I. Sanidas, S.C. Kampranis,

P.N. Tsichlis, FGF-2 regulates cell proliferation, migration, and angiogenesis

through an NDY1/KDM2B-miR-101-EZH2 pathway, Mol. Cell. 43 (2011)

285e298, https://doi.org/10.1016/j.molcel.2011.06.020.

S. Mao, Y. Wu, R. Wang, Y. Guo, D. Bi, W. Ma, W. Zhang, J. Zhang, Y. Yan, X. Yao,

Overexpression of GAS6 promotes cell proliferation and invasion in bladder

cancer by activation of the PI3K/AKT pathway, OncoTargets Ther. 13 (2020)

S. Zhang, M. Harada, T. Kimura et al.

Biochemical and Biophysical Research Communications 621 (2022) 46e52

[45] J.D. Proto, Y. Tang, A. Lu, W.C. Chen, E. Stahl, M. Poddar, S.A. Beckman,

P.D. Robbins, L.J. Nidernhofer, K. Imbrogno, T. Hannigan, W.M. Mars, B. Wang,

J. Huard, NF-kappaB inhibition reveals a novel role for HGF during skeletal

muscle repair, Cell Death Dis. 6 (2015), e1730, https://doi.org/10.1038/

cddis.2015.66.

4813e4824, https://doi.org/10.2147/OTT.S237174.

[44] X. Ding, J. Ji, J. Jiang, Q. Cai, C. Wang, M. Shi, Y. Yu, Z. Zhu, J. Zhang, HGFmediated crosstalk between cancer-associated fibroblasts and METunamplified gastric cancer cells activates coordinated tumorigenesis and

metastasis, Cell Death Dis. 9 (2018) 867, https://doi.org/10.1038/s41419-0180922-1.

52

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る