リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Silicon Refining by Solidification from Liquid Si–Zn Alloy and Floating Zone Method」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Silicon Refining by Solidification from Liquid Si–Zn Alloy and Floating Zone Method

Ma, Yuanjia Yasuda, Kouji Ido, Akifumi Shimao, Takeyuki Zhong, Ming Hagiwara, Rika Nohira, Toshiyuki 京都大学 DOI:10.2320/matertrans.m-m2020872

2021.03

概要

This study evaluated the refining ability of a proposed production process for solar-grade silicon utilizing the electrolytic reduction of SiO₂ on a liquid zinc electrode in molten salt. The distribution behaviors of impurity elements during the precipitation of solid silicon from a liquid Si–Zn alloy were studied by thermodynamic calculations at 923 K. In the precipitation experiment, silicon granules were recovered from a liquid Si–Zn alloy, which was prepared from metallurgical-grade silicon. The impurity removal ratios exceeded 99% for C, Al, and Ca, and 90% for Fe. High removal ratios were attained for B and O as well. As the post-processing, a silicon ingot was produced from the precipitated silicon granules by the floating zone method. The Zn residue in the precipitated silicon was completely evaporated during the floating zone refining. The total content of metallic elements (Al, Ca, Fe, Ti, and Zn) was lower than 0.2 ppmw, even though metallurgical-grade silicon was used as the starting material.

この論文で使われている画像

参考文献

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

27)

28)

29)

30)

31)

32)

33)

Key World Energy Statistics 2019, (IEA, Paris, 2019) p. 25.

World Energy Outlook 2018, (IEA, Paris, 2018) p. 63.

Industrial Rare Metal 2019, (Arumu Publ. Co., Tokyo, 2019) p. 19.

Photovoltaic Market 2019, (RTS Corp., Tokyo, Japan, 2019) p. 43.

Trends in Photovoltaic Applications 2019, (PVPS, IEA, Paris, 2019)

p. 59.

H. Schweickert, K. Reusche and H. Gustsche: U.S. Patent 3011877

(1961).

H. Gutsche: U.S. Patent 3011877 (1962).

C. Bye and B. Ceccaroli: Sol. Energy Mater. Sol. Cells 130 (2014)

634­646.

K. Hanazawa, N. Yuge and Y. Kato: Mater. Trans. 45 (2004) 844­849.

G. Burns, J. Rabe and S. Yilmaz: PCT International Patent WO2005/

061383 (2005).

K. Tang, S. Andersson, E. Nordstrand and M. Tangstad: JOM 64

(2012) 952­956.

X. Ma, T. Yoshikawa and K. Morita: Separ. Purif. Technol. 125 (2014)

264­268.

Y. Wang, X. Ma and K. Morita: Metall. Mater. Trans. B 45 (2014) 334­

337.

S. Sakaguchi: PCT International Patent WO2007/119605 (2007).

T. Shimamune and I. Yoshikawa: Japanese Patent, Toku Kai H15342016 (2003).

E. Robert and T. Zijlema: PCT International Patent WO2006/100114

(2006).

S. Honda, M. Yasueda, S. Hayashida and M. Yamaguchi: Japanese

Patent, Toku Kai H19-145663 (2007).

T. Nohira, K. Yasuda and Y. Ito: Nat. Mater. 2 (2003) 397­401.

K. Yasuda, T. Nohira, K. Amezawa, Y.H. Ogata and Y. Ito: J.

Electrochem. Soc. 152 (2005) D69­D74.

K. Yasuda, T. Nohira, R. Hagiwara and Y.H. Ogata: Electrochim. Acta

53 (2007) 106­110.

T. Nohira: Yoyuen Oyobi Koon Kagaku 54 (2011) 95­103 [in

Japanese].

T. Toba, K. Yasuda, T. Nohira, X. Yang, R. Hagiwara, K. Ichitsubo, K.

Masuda and T. Homma: Electrochemistry 81 (2013) 559­565.

X. Jin, P. Gao, D. Wang, X. Hu and G.Z. Chen: Angew. Chem. Int. Ed.

43 (2004) 733­736.

P.C. Pistorius and D.J. Fray: J. SAIMM 106 (2006) 31­42.

S. Lee, J. Hur and C. Seo: J. Ind. Eng. Chem. 14 (2008) 651­654.

J. Yang, S. Lu, S. Kan, X. Zhang and J. Du: Chem. Commun. (2009)

3273­3275.

E. Juzeliunas, A. Cox and D.J. Fray: Electrochem. Commun. 12 (2010)

1270­1274.

W. Xiao, X. Jin, Y. Deng, D. Wang and G.Z. Chen: J. Electroanal.

Chem. 639 (2010) 130­140.

E. Ergül, İ. Karakaya and M. Erdoğan: J. Alloy. Compd. 509 (2011)

899­903.

S. Cho, F.F. Fan and A.J. Bard: Electrochim. Acta 65 (2012) 57­63.

H. Nishihara, T. Suzuki, H. Itoi, B. An, S. Iwamura, R. Berenguer and

T. Kyotani: Nanoscale 6 (2014) 10574­10583.

S. Fang, H. Wang, J. Yang, S. Lu, B. Yu, J. Wang and C. Zhao: Mater.

Lett. 160 (2015) 1­4.

S. Fang, H. Wang, J. Yang, S. Lu, B. Yu, J. Wang and C. Zhao: J. Phys.

Chem. Solids 89 (2016) 1­6.

34) T. Nohira, A. Ido, T. Shimao, X. Yang, K. Yasuda, R. Hagiwara and T.

Homma: ECS Trans. 75 (2016) 17­33.

35) K. Yasuda, T. Shimao, R. Hagiwara, T. Homma and T. Nohira: J.

Electrochem. Soc. 164 (2017) H5049­H5056.

36) Y. Ma, A. Ido, K. Yasuda, R. Hagiwara and T. Nohira: J. Electrochem.

Soc. 166 (2019) D162­D167.

37) T. Yoshikawa and K. Morita: Sci. Technol. Adv. Mater. 4 (2003) 531­

537.

38) T. Yoshikawa and K. Morita: J. Cryst. Growth 311 (2009) 776­779.

39) W. Yu, W. Ma, G. Lv, Y. Ren, H. Xue and Y. Dai: Trans. Nonferrous

Met. Soc. China 23 (2013) 3476­3481.

40) J. Li, Z. Guo, J. Li and L. Yu: Silicon 7 (2015) 239­246.

41) J.M. Juneja and T.K. Mukherjee: Hydrometallurgy 16 (1986) 69­75.

42) X. Ma, T. Yoshikawa and K. Morita: J. Cryst. Growth 377 (2013) 192­

196.

43) S. Esfahani and M. Barati: Met. Mater. Int. 17 (2011) 823­829.

44) S. Esfahani and M. Barati: Met. Mater. Int. 17 (2011) 1009­1015.

45) T. Yoshikawa and K. Morita: Metall. Mater. Trans. B 36 (2005) 731­

736.

46) T. Yoshikawa and K. Morita: J. Electrochem. Soc. 150 (2003) G465­

G468.

47) Y. Chung, J.M. Toguri and R. Sridhar: Can. Metall. Quart. 40 (2001)

185­192.

48) T.B. Massalski, J.L. Murray, L.H. Bennett and H. Baker: Binary Alloy

Phase Diagrams, 2nd ed., (American Society for Metals, Ohio, 1986).

49) M. Haemaelaeinen and I. Isomaeki: J. Alloy. Compd. 392 (2005) 220­

224.

50) M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A.

McDonald and A.N. Syverud: JANAF Thermochemical Tables, 3rd ed.,

(American Chemical Society, Washington, DC, 1985).

51) I. Barin: Thermochemical Data of Pure Substances, 2nd ed., (VCH

Verlags Gesellschaft, Weinheim, 1993).

52) B. Landolt: Thermodynamic Properties of Inorganic Materials, Part IV,

(Springer-Verlag, Berlin, 2001).

53) O. Knacke, O. Kubaschewski and K. Hesselman: Thermochemical

Properties of Inorganic Substances, 2nd ed., (Springer-Verlag, Berlin,

1991).

54) B. Binnewies and E. Milke: Thermochemical Data of Elements and

Compounds, 2nd ed., (Wiley-VCH, Weinheim, 2002).

55) M.E. Schlesinger: Chem. Rev. 102 (2002) 4267­4302.

56) I. Barin: Thermochemical Data of Pure Substances, 3rd ed., (VCH

Verlags Gesellschaft, Weinheim, 1995).

57) I. Barin, O. Knacke and O. Kubaschewski: Thermochemical Properties

of Inorganic Substances, (Springer-Verlag, Berlin, 1977).

58) B.J. McBride, S. Gordon and M.A. Reno: Thermodynamic Data for

Fifty Reference Elements, (NASA Technical Paper 3287, Ohio, 1993).

59) C. Malcolm: NIST-JANAF Thermochemical Tables, 4th ed., (American

Chemical Society, New York, 1998).

60) B. Landolt: Thermodynamic Properties of Inorganic Materials, Part I,

(Springer-Verlag, Berlin, 1999).

61) P.J. Spencer, A.D. Pelton, Y. Kang, P. Chartrand and C.D. Fuerst:

Calphad 32 (2008) 423­431.

62) I. Barin: Thermochemical Data of Pure Substances, 1st ed., (VCH

Verlags Gesellschaft, Weinheim, 1989).

63) G. Reumont, P. Perrot, J.M. Fiorani and J. Hertz: J. Phase Equilib. 21

(2000) 371­378.

64) V.S. Iorish and G.V. Belov: On Quality of Adopted Values in Thermodynamic Databases, (Scientific Databases Conference, Japan, 1996).

65) K. Doi, S. Ono, H. Ohtani and M. Hasebe: J. Phase Equilibria Diffus.

27 (2006) 63­74.

66) G.L. Vick and K.M. Whittle: J. Electrochem. Soc. 116 (1969) 1142­

1144.

67) A.J. Bard, R. Parsons and J. Jordan: Standard Potentials in Aqueous

Solution, (Marcel Dekker Inc., New York, 1985).

68) Z. Chen, F. Yin, M. Zhao and Z. Li: J. Phase Equilibria Diffus. 34

(2013) 366­374.

69) T. Narushima, A. Yamashita, C. Ouchi and Y. Iguchi: Mater. Trans. 43

(2002) 2120­2124.

70) H.A. Wrledt: Bull. Alloy Phase Diagrams 11 (1990) 43­61.

71) S. Otsuka and Z. Kozuka: Trans. JIM 22 (1981) 558­566.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Silicon Refining by Solidification from Liquid Si­Zn Alloy and Floating Zone Method

72) R.W. Olesinski, N. Kanani and G.J. Abbaschian: Bull. Alloy Phase

Diagrams 6 (1985) 130­133.

73) H. Sigmund: J. Electrochem. Soc. 129 (1982) 2809­2812.

74) E.R. Weber: Appl. Phys. A 30 (1983) 1­22.

75) S. Kuge and H. Nakashima: Jpn. J. Appl. Phys. 30 (1991) 2659­2663.

76) H. Okamoto: J. Phase Equilibria Diffus. 29 (2008) 211­212.

77) F.A. Trumbore: Bell Syst. Tech. J. 39 (1960) 205­233.

78) T. Yoshikawa and K. Morita: Sci. Technol. Adv. Mater. 4 (2003) 531­

537.

79) T.R. Hogness: J. Am. Chem. Soc. 43 (1921) 1621­1628.

80) K.C. Mills and L. Courtney: ISIJ Int. 40 (2000) S130­S138.

411

81) V.P. Popov and B.R. Pamplin: J. Cryst. Growth 15 (1972) 129­132.

82) A. Miller, R.G. Humphreys and B. Chapman: J. Phys. Colloques 36

(1975) C3-31­C3-34.

83) T. Ohmi and T. Nitta (eds.): Silicon no Kagaku, 1st ed., (Realize Inc.,

Tokyo, 1996) p. 1017 [in Japanese].

84) M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A.

McDonald and A.N. Syverud: NIST­JANAF Thermochemical Tables,

4th ed., (American Chemical Society, Washington, DC, 1998).

85) T. Yoshikawa and K. Morita: ISIJ Int. 45 (2005) 967­971.

86) F.A. Trumbore: Bell Syst. Tech. J. 39 (1960) 205­233.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る