リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Coupling of a quantum memory and telecommunication wavelength photons for high-rate entanglement distribution in quantum repeaters」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Coupling of a quantum memory and telecommunication wavelength photons for high-rate entanglement distribution in quantum repeaters

Kyoko Mannami Takeshi Kondo Tomoki Tsuno Takuto Miyashita Daisuke Yoshida Ko Ito Kazuya Niizeki Ippei Nakamura 10758949 Feng-Lei Hong 10260217 Tomoyuki Horikiri 40530275 横浜国立大学

2021.11.30

概要

Quantum repeaters are indispensable tools for long-distance quantum communication. However, frequency matching between entangled photon sources and remote quantum memories (QMs) is difficult, which is an obstacle to the implementation of quantum repeaters. In this paper, we demonstrate a method to achieve the coupling of a Pr:YSO as a fixed-time QM with a single telecommunication-wavelength photon through frequency stabilization using an optical frequency comb over all applied laser wavelengths. The demonstrated method can lead to the implementation of a quantum repeater scheme enabling an improvement of the entanglement generation rate, paving the way for long-distance quantum communication.

この論文で使われている画像

参考文献

1. R. Rivest, A. Shamir, and L. Adleman, “On Digital Signatures and Public-Key Cryptosystems,” MIT Laboratory for

Computer Science Technical Report TR-212 (1979).

2. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002).

3. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key distribution scheme,” Phys. Rev. A

65(3), 032302 (2002).

4. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the EinsteinPodolsky–Rosen pair block,” Phys. Rev. A 68(4), 042317 (2003).

Research Article

Vol. 29, No. 25 / 6 Dec 2021 / Optics Express 41532

5. W. Zhang, D. S. Ding, Y. B. Sheng, L. Zhou, B.-S. Shi, and G.-C. Guo, “Quantum secure direct communication with

quantum memory,” Phys. Rev. Lett. 118(22), 220501 (2017).

6. Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, and X. Chen, “A 15-user quantum secure direct communication network,”

Light Sci Appl 10(1), 183 (2021).

7. A. Broadbent, J. Fitzsimons, and E. Kashefi, “Universal Blind Quantum Computation,” Proc. 50th Annu, IEEE Symp.

Found. Comput. Sci. (IEEE, 2009), pp. 517–526.

8. H.-J. Briegel, W. Dür, J. Cirac, and P. Zoller, “Quantum Repeaters: The Role of Imperfect Local Operations in

Quantum Communication,” Phys. Rev. Lett. 81(26), 5932–5935 (1998).

9. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum Repeaters with Photon

Pair Sources and Multimode Memories,” Phys. Rev. Lett. 98(19), 190503 (2007).

10. C. Jones, D. Kim, M. Rakher, P. Kwiat, and T. Ladd, “Design and Analysis of Communication Protocols for Quantum

Repeater Networks,” New J. Phys. 18(8), 083015 (2016).

11. N. Sangouard, C. Simon, H. de Riedmatten, and N. Gisin, “Quantum repeaters based on atomic ensembles and linear

optics,” Rev. Mod. Phys. 83(1), 33–80 (2011).

12. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles

and linear optics,” Nature 414(6862), 413–418 (2001).

13. N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. W. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D.

J. Twitchen, M. Markham, and R. Hanson, “Entanglement distillation between solid-state quantum network nodes,”

Science 356(6341), 928–932 (2017).

14. B. K. Behera, S. Seth, A. Das, and P. K. Panigrahi, “Demonstration of entanglement purification and swapping

protocol to design quantum repeater in IBM quantum computer,” Quantum Inf Process 18(4), 108 (2019).

15. X.-M. Hu, C.-X. Huang, Y.-B. Sheng, L. Zhou, B.-H. Liu, Y. Guo, C. Zhang, W.-B. Xing, Y.-F. Huang, C.-F. Li,

and G.-C. Guo, “Long-Distance Entanglement Purification for Quantum Communication,” Phys. Rev. Lett. 126(1),

010503 (2021).

16. D. L-Rivera, S. Grandi, J. V. Rakonjac, A. Seri, and H. de Riedmatten, “Telecom-heralded entanglement between

multimode solid-state quantum memories,” Nature 594(7861), 37–40 (2021).

17. X. Liu, J. Hu, Z.-F. Li, X. Li, P.-Y. Li, P.-J. Liang, Z.-Q. Zhou, C.-F. Li, and G.-C. Guo, “Heralded entanglement

distribution between two absorptive quantum memories,” Nature 594(7861), 41–45 (2021).

18. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency

combs,” Phys. Rev. A 79(5), 052329 (2009).

19. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon,

W. Sohler, and W. Tittel, “Spectral Multiplexing for Scalable Quantum Photonics using an Atomic Frequency Comb

Quantum Memory and Feed-Forward Control,” Phys. Rev. Lett. 113(5), 053603 (2014).

20. D. Yoshida, K. Niizeki, S. Tamura, and T. Horikiri, “Entanglement distribution between quantum repeater nodes with

an absorptive type memory,” Int. J. Quantum Inf. 18(05), 2050026 (2020).

21. K. Niizeki, M. Zheng, X. Xie, K. Okamura, N. Takei, N. Namekata, S. Inoue, H. Kosaka, and T. Horikiri, “Ultrabright

narrow-band telecom two-photon source for long-distance quantum communication,” Appl. Phys. Exp. 11(4), 042801

(2018).

22. K. Niizeki, D. Yoshida, K. Ito, I. Nakamura, N. Takei, K. Okamura, M. Zheng, X. Xie, and T. Horikiri, “Two-photon

comb with wavelength conversion and 20-km distribution for quantum communication,” Commun. Phys. 3(1), 138

(2020).

23. M. Cristiani, H. de Riedmatten, J. Fekete, and D. Riela, “Ultranarrow-Band Photon-Pair Source Compatible with

Solid State Quantum Memories and Telecommunication Networks,” Phys. Rev. Lett. 110(22), 220502 (2013).

24. A. Amari, A. Walther, M. Sabooni, M. Huang, S. Kröll, M. Afzelius, I. Usmani, H. de Riedmatten, and N. Gisin,

“Towards an efficient atomic frequency comb quantum memory,” J,” Luminescence 130(9), 1579–1585 (2010).

25. P. Jobez, N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner, N. Gisin, and M. Afzelius, “Towards highly

multimode optical quantum memory for quantum repeaters,” Phys. Rev. A 93(3), 032327 (2016).

26. P. Jobez, I. Usmani, N. Timoney, C. Laplane, N. Gisin, and M. Afzelius, “Cavity-enhanced storage in an optical

spin-wave memory,” New J. Phys. 16(8), 083005 (2014).

27. Z.-Q. Zhou, J. Wang, C.-F. Li, and G.-C. Guo, “Efficient spectral hole-burning and atomic frequency comb storage in

Nd3+ :YLiF4 ,” Scien. Rep. 3(1), 2754 (2013).

28. M. Nilsson, L. Rippe, S. Kröll, R. Klieber, and D. Suter, “Hole burning techniques for isolation and study of individual

hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr 3+ :Y2 SiO5 ,” Phys. Rev. B 70(21),

214116 (2004).

29. R. Equall, R. Cone, and R. Macfarlane, “Homogeneous broadening and hyperfine structure of optical transitions in

Pr3+ :Y2 SiO5 ,” Phys. Rev. B 52(6), 3963–3969 (1995).

30. M. Żukowski, A. Zeilinger, M. Horne, and A. Ekert, “‘‘Event-ready-detectors’’ Bell experiment via entanglement

swapping,” Phys. Rev. Lett. 71(26), 4287–4290 (1993).

31. L. Yu, C. Natarajan, T. Horikiri, C. Langrock, J. Pelc, M. Tanner, E. Abe, S. Maier, C. Schneider, S. Höfling, M. Kamp,

R. Hadfield, M. Fejer, and Y. Yamamoto, “Two-photon interference at telecom wavelengths for time-bin-encoded

single photons from quantum-dot spin qubits,” Nat. Commun. 6(1), 8955 (2015).

Research Article

Vol. 29, No. 25 / 6 Dec 2021 / Optics Express 41533

32. N. Sinclair, K. Heshami, C. Deshmukh, D. Oblak, C. Simon, and W. Tittel, “Proposal and proof-of-principle

demonstration of non-destructive detection of photonic qubits using a Tm:LiNbO3 waveguide,” Nat. Commun. 7(1),

13454 (2016).

33. M. Gündoğan, M. Mazzera, P. Ledingham, M. Cristiani, and H. de Riedmatten, “Coherent storage of temporally

multimode light using a spin-wave atomic frequency comb memory,” New J. Phys. 15(4), 045012 (2013).

34. N. Maring, K. Kutluer, J. Cohen, and M. Mazzera, “Storage of up-converted telecom photons in a doped crystal,”

New J. Phys. 16(11), 113021 (2014).

35. M. Afzelius, I. Usmani, A. Amari, B. Lauritzen, A. Walther, C. Simon, N. Sangouard, J. Minář, H. de Riedmatten, N.

Gisin, and S. Kröll, “Demonstration of Atomic Frequency Comb Memory for Light with Spin-Wave Storage,” Phys.

Rev. Lett. 104(4), 040503 (2010).

36. N. Timoney, B. Lauritzen, I. Usmani, M. Afzelius, and N. Gisin, “Atomic frequency comb memory with spin-wave

storage in 153 Eu3 + :Y2 SiO5 ,” J. Phys. B: At. Mol. Opt. Phys. 45(12), 124001 (2012).

37. T. Miyashita, T. Kondo, K. Ikeda, K. Yoshii, F. -L. Hong, and T. Horikiri, “Offset-locking-based frequency stabilization

of external cavity diode lasers for long-distance quantum communication,” arXiv:2108.13130 [quant-ph] (2021).

38. Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency

offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).

39. P. W. Milonni, “Controlling the speed of light pulses,” J. Phys. B: At. Mol. Opt. Phys. 35(6), R31–R56 (2002).

40. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Experimental superradiance and slow-light effects for

quantum memories,” Phys. Rev. A 80(1), 012317 (2009).

41. Y. Asahina, K. Yoshii, Y. Yamada, Y. Hisai, S. Okubo, M. Wada, H. Inaba, T. Hasegawa, Y. Yamamoto, and F.-L.

Hong, “Narrow-linewidth and highly stable optical frequency comb realized with a simple electro-optic modulator

system in a mode-locked Er:fiber laser,” Jpn. J. Appl. Phys. 58(3), 038003 (2019).

42. F.-L. Hong and J. Ishikawa, “Hyperfine structures of the R(122)35-0 and P(84)33-0 transitions of 127 I2 near 532 nm,”

Optics Commun. 183(1-4), 101–108 (2000).

43. M. Nicolle, J. N. Becker, C. Weinzetl, I. A. Walmsley, and P. M. Ledingham, “Gigahertz-bandwidth optical memory

in Pr3+ :Y2 SiO5 ,” Opt. Lett. 46(12), 2948–2951 (2021).

44. A. Seri, D. L. Rivera, A. Lenhard, G. Corrielli, R. Osellame, M. Mazzera, and H. de Riedmatten, “Quantum Storage

of Frequency-Multiplexed Heralded Single Photons,” Phys. Rev. Lett. 123(8), 080502 (2019).

45. C. W. Thiel, R. M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, and R. L. Cone, “Measuring and analyzing

excitation-induced decoherence in rare-earth-doped optical materials,” Laser Phys. 24(10), 106002 (2014).

46. B. S. Ham and P. R. Hemmer, “Population shelved all-optical modulation,” Phys. Rev. B 68(7), 073102 (2003).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る