リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Two-photon comb with wavelength conversion and 20-km distribution for quantum communication」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Two-photon comb with wavelength conversion and 20-km distribution for quantum communication

Kazuya Niizeki Daisuke Yoshida Ko Ito Ippei Nakamura 10758949 Nobuyuki Takei 20531841 Kotaro Okamura Ming-Yang Zheng Xiu-Ping Xie Tomoyuki Horikiri 40530275 横浜国立大学

2020.08.12

概要

Quantum computing and quantum communication, have been greatly developed in recent years and expected to contribute to quantum internet technologies, including cloud quantum computing and unconditionally secure communication. However, long-distance quantum communication is challenging mainly because of optical fiber losses; quantum repeaters are indispensable for fiber-based transmission because unknown quantum states cannot be amplified with certainty. In this study, we demonstrate a versatile entanglement source in the telecom band for fiber-based quantum internet, which has a narrow linewidth of sub-MHz range, entanglement fidelity of more than 95%, and Bell-state generation even with frequency multimode. Furthermore, after a total distribution length of 20-km in fiber, two-photon correlation is observed with an easily identifiable normalized correlation coefficient, despite the limited bandwidth of the wavelength converter. The presented implementation promises an efficient method for entanglement distribution that is compatible with quantum memory and frequency-multiplexed long-distance quantum communication applications.

この論文で使われている画像

参考文献

1.

2.

3.

4.

Methods

Two-photon comb. Two photons were generated by the SPDC process in two

PPLN crystals (manufactured by Jinan Institute of Quantum Technology) having

the dimensions of 0.5 × 3 × 10 mm and 0.5 × 0.5 × 10 mm, arranged orthogonally in

a bow-tie cavity. The small dimensions allowed the crystals to precisely align with

the laser path. The temperatures of the crystals and their holders were stabilized to

be within ~1 mK. An SPDC pump laser of 757 nm was obtained by second harmonic generation (SHG) of a 1514-nm external-cavity diode laser (Sacher,

TEC420-1530-1000), whose wavelength was stabilized using acetylene molecules.

The pump laser was focused to a waist size of ~25 μm using lenses and a

plano–concave mirror to achieve strong parametric interaction53.

The optical cavity was stabilized using the Pound–Drever–Hall technique for

this laser with an optical chopper with a duty cycle of 1/3. The two photons were

separated using a 50:50 laser-line beam splitter, following which they entered a

tomographic setup consisting of a zero-order 1514-nm quarter-wave plate, halfwave plate, and vertical-transmittance polarizer, similar to that in ref. 43. To

generate a Bell state, two additional half-waveplates were placed in the path of one

photon: one plate was used as a phase shifter by aligning the yaw angle, and the

other was used as a bit flipper with a slow axis of 45°. The measurement time for

one basis was 15 s, which was sufficient to converge the correlation function with a

relatively strong pump power of 100 μW. The total testing time was ~10 min,

including a rest time of 20 s. In almost all our experiments, the SSPDs were

superconducting single-photon detectors with a detection efficiency of ~85%,

which was the maximum value for our setup. However, a detection efficiency of

~60% was used in the experiments yielding the results shown in Fig. 4b (blue dots)

because our SiAPDs had an efficiency of 60% for visible wavelengths (SPCMAQRH-14-FC). The maximal input power was 10 mW, resulting in a detected

count rate approaching the limit of ~107. We utilized HydraHarp 400 as a TCSPC

module, whose resolution is 32 ps for that shown in Fig. 2a, and 16 ps for the

others. The 32-ps resolution was used because it could record longer interval times,

which was required for measuring the coincidences with an adequate margin.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

Arute, F. et al. Quantum supremacy using a programmable superconducting

processor. Nature 574, 505–510 (2019).

Shor, P. W. Algorithms for quantum computation: discrete logarithms and

factoring. In Proc. 35th IEEE FOCS (ed. Goldwasser, S.), pp.124−134 (IEEE

Computer Society Press, 1994).

Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution

and coin tossing. In Proc. IEEE International Conference on Computers

Systems and Signal Processing (ed. Goldwasser, S.), pp. 175−179 (IEEE

Computer Society Press, 1984).

Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett.

67, 661–663 (1991).

Kimble, H. The quantum internet. Nature 453, 1023–1030 (2008).

Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum

computation. In 2009 50th Annual IEEE Symposium on Foundations of

Computer Science, (ed. Spielman, D.), pp. 517−526 (IEEE Press, 2009).

Bennett, C. H. et al. Teleporting an unknown quantum state via dual classical

and Einstein−Podolsky−Rosen channels. Phys. Rev. Lett. 70, 1895–1899

(1993).

Zukowski, M., Zeilinger, A., Horne, M. A. & Ekert, A. K. “Event-readydetectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71,

4287–4290 (1993).

Bennet, C. H. & Wiesner, S. J. Communication via one- and two-particle

operators on Einstein−Podolsky−Rosen states. Phys. Rev. Lett. 69, 2881–2884

(1992).

Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers.

Science 356, 1140–1144 (2017).

Liao, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev.

Lett. 120, 030501 (2018).

Calderaro, L. et al. Towards quantum communication from global navigation

satellite system. Quantum Sci. Technol. 4, 015012 (2018).

Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted

measurement-device-independent quantum key distribution. N. J. Phys. 16,

043005 (2014).

Hasegawa, Y. et al. Experimental time-reversed adaptive Bell measurement

towards all-photonic quantum repeaters. Nat. Commun. 10, 378 (2019).

Lucamarini, M., Yuan, Z. L., Dynes, J. F. & Shields, A. J. Overcoming the

rate–distance limit of quantum key distribution without quantum repeaters.

Nature 557, 400–403 (2018).

Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber.

Phys. Rev. Lett. 121, 190502 (2018).

COMMUNICATIONS PHYSICS | (2020)3:138 | https://doi.org/10.1038/s42005-020-00406-1 | www.nature.com/commsphys

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00406-1

18. DiVincenzo, D. P. The physical implementation of quantum computation.

Fortschr. der Phys. 48, 9–11 (2000).

19. Kaiser, F. et al. A versatile source of polarisation entangled photons for

quantum network applications. Laser Phys. Lett. 10, 045202 (2013).

20. Slattery, O., Ma, L., Zong, K. & Tang, X. Background and review of cavityenhanced spontaneous parametric down-conversion. J. Res. Natl Inst. Stand.

Technol. 124, 124019 (2019).

21. Collett, M. J. & Gardiner, C. W. Squeezing of intracavity and traveling-wave

light fields produced in parametric amplification. Phys. Rev. A 30, 1386–1391

(1984).

22. Eckardt, R. C., Nabors, C. D., Kozlovsky, W. J. & Byer, R. L. Optical

parametric oscillator frequency tuning and control. J. Opt. Soc. Am. B 8,

646–667 (1991).

23. Ou, Z. Y. & Lu, Y. J. Cavity enhanced spontaneous parametric downconversion for the prolongation of correlation time between conjugate

photons. Phys. Rev. Lett. 83, 2556–2559 (1999).

24. Lu, Y. J. & Ou, Z. Y. Optical parametric oscillator far below threshold:

experiment versus theory. Phys. Rev. A 62, 033804 (2000).

25. Scholz, M., Koch, L. & Benson, O. Statistics of narrow-band single photons for

quantum memories generated by ultrabright cavity-enhanced parametric

down-conversion. Phys. Rev. Lett. 102, 063603 (2009).

26. Jeronimo-Moreno, Y., Rodriguez-Benavides, S. & U’Ren, A. B. Theory of

cavity-enhanced spontaneous parametric down conversion. Laser Phys. 20,

1221–1233 (2010).

27. Chuu, C.-S. & Harris, S. E. Ultrabright backward-wave biphoton source. Phys.

Rev. A 83, 061803(R) (2011).

28. Luo, K.-H. et al. Direct generation of genuine single-longitudinal-mode

narrowband photon pairs. N. J. Phys. 17, 073039 (2015).

29. Ahlrichs, A. & Benson, O. Bright source of indistinguishable photons based on

cavity-enhanced parametric down-conversion utilizing the cluster effect. Appl.

Phys. Lett. 108, 021111 (2016).

30. Wu, C.-H. et al. Bright single photons for light-matter interaction. Phys. Rev.

A 96, 023811 (2017).

31. Tsai, P.-J. & Chen, Y.-C. Ultrabright, narrow-band photon-pair source for

atomic quantum memories. Quantum Sci. Tech. 3, 034005 (2018).

32. Goto, H., Yanagihara, Y., Wang, H., Horikiri, T. & Kobayashi, T. Observation

of an oscillatory correlation function of multimode two-photon pairs. Phys.

Rev. A 68, 015803 (2003).

33. Fekete, J., Rieländer, D., Cristiani, M. & de Riedmatten, H. Ultranarrow-band

photon-pair source compatible with solid state quantum memories and

telecommunication networks. Phys. Rev. Lett. 110, 220502 (2013).

34. Rieländer, D., Lenhard, A., Mazzera, M. & de Riedmatten, H. Cavity enhanced

telecom heralded single photons for spin-wave solid state quantum memories.

N. J. Phys. 18, 123013 (2016).

35. Rambach, M., Nikolova, A., Weinhold, T. J. & White, A. G. Sub-megahertz

linewidth single photon source. APL Photonics 1, 096101 (2016).

36. Tamura, S. et al. Two-step frequency conversion for connecting distant

quantum memories by transmission through an optical fiber. Jpn. J. Appl.

Phys. 57, 062801 (2018).

37. Strassmann, P. C., Martin, A., Gisin, N. & Afzelius, M. Spectral noise in

frequency conversion from the visible to the telecommunication C-band. Opt.

Express 27, 14298–14307 (2019).

38. De Greve, K. et al. Quantum-dot spin–photon entanglement via frequency

down conversion to telecom wavelength. Nature 491, 421–425 (2012).

39. Ikuta, R. et al. Polarization insensitive frequency conversion for an atomphoton entanglement distribution via a telecom network. Nat. Commun. 9,

1997 (2018).

40. Kwiat, P. G., Waks, E., White, A. G., Appelbaum, I. & Eberhard, P. H.

Ultrabright source of polarization-entangled photons. Phys. Rev. A 60,

R773–R776 (1998).

41. Pomarico, E. et al. Waveguide-based OPO source of entangled photon pairs.

N. J. Phys. 11, 113042 (2009).

42. Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum

memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

43. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of

qubits. Phys. Rev. A 64, 052312 (2001).

44. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment

to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

45. Holliday, K., Croci, M., Vauthey, E. & Wild, U. P. Spectral hole burning and

holography in an Y2SiO5:Pr3+ crystal. Phys. Rev. B 47, 14741 (1993).

ARTICLE

46. Steinlechner, F. et al. A high-brightness source of polarization-entangled

photons optimized for applications in free space. Opt. Express 20, 9640–9649

(2012).

47. Wang, J. et al. Universal photonic quantum interface for a quantum network.

Phys. Rev. Appl. 10, 054036 (2018).

48. Yang, T.-S. et al. Multiplexed storage and real-time manipulation based on a

multiple degree-of-freedom quantum memory. Nat. Commun. 9, 3407 (2018).

49. Seri, A. et al. Quantum storage of frequency-multiplexed heralded single

photons. Phys. Rev. Lett. 123, 080502 (2019).

50. Zhang, H. et al. Slow light for deep tissue imaging with ultrasound

modulation. Appl. Phys. Lett. 100, 131102 (2012).

51. Beavan, S. E., Goldschmidt, E. A. & Sellars, M. J. Demonstration of a dynamic

bandpass frequency filter in a rare-earth ion-doped crystal. J. Opt. Soc. Am. B

30, 1173–1177 (2013).

52. Brendel, J., Gisin, N., Tittel, W. & Zbinden, H. Pulsed energy-time entangled

twin-photon source for quantum communication. Phys. Rev. Lett. 82,

2594–2597 (1999).

53. Boyd, G. D. & Kleinman, D. A. Parametric interaction of focused Gaussian

light beams. J. Appl. Phys. 39, 3597–3639 (1968).

Acknowledgements

We thank H. Goto, Q. Zhang, Y. Yamamoto, S. Utsunomiya, T. Kobayashi, M. Fraser, I.

Iwakura, S. Tamura, K. Ikeda, and F.-L. Hong for their support. This work was supported

by the Toray Science Foundation, the Asahi Glass Foundation, the KDDI Foundation,

the SECOM Foundation, Research Foundation for Opto-Science and Technology, JST

PRESTO JPMJPR1769, JST START ST292008BN, and Kanagawa Institute of Industrial

Science and Technology (KISTEC). T.H. also acknowledge members of Quantum

Internet Task Force, which is a research consortium to realize the Quantum Internet, for

comprehensive and interdisciplinary discussions of the Quantum Internet.

Author contributions

K.N. and T.H. conceived this project. K.N., D.Y., I.N., N.T., K.O., and T.H. designed the

experiments. M.-Y.Z. and X.-P.X. fabricated the SPDC crystals. K.N., D.Y., and K.I.

performed the experiments. K.N. and T.H. analyzed the data and drafted the manuscript.

K.N., N.T., X.-P. X., and T.H. revised the text. All the authors contributed to discussions.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42005020-00406-1.

Correspondence and requests for materials should be addressed to T.H.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2020

COMMUNICATIONS PHYSICS | (2020)3:138 | https://doi.org/10.1038/s42005-020-00406-1 | www.nature.com/commsphys

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る