リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Level set numerical approach to anisotropic mean curvature flow on obstacle」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Level set numerical approach to anisotropic mean curvature flow on obstacle

Gavhale, Siddharth Balu 京都大学 DOI:10.14989/doctor.k23677

2022.03.23

概要

The thesis investigates multiphase geometric evolutions with direction dependent energy densities and with global constraints on the enclosed volumes. This kind of problem has numerous applications in technology and natural science fields, while its mathematical understanding is still incomplete.

The exposition starts with a review of known results in order of increasing com- plexity. Thus, first, two-phase mean curvature flow model is introduced, together with its derivation and main results on well-posedness theory. This relates to the approaches to mathematically represent an evolving interface, which are described and the motivation is given for selecting the implicit level-set approach in view of possible topology changes in the investigated phenomenon. The overview then con- tinues with results on two-phase problems with anisotropic, i.e., normal direction- dependent, energy and / or with constraint on the enclosed volume. Finally, the multiphase problem with junctions is reviewed showing that for the anisotropic case mathematical theory is available only in the explicit approach without topology changes. Next, methods to numerically approximate the multiphase anisotropic problem are reviewed with the finding that although the anisotropic problem is treated explicitly [Wang et al., 2015] and the isotropic problem is treated implicitly [Xu et al., 2017], there is no method in the literature addressing possible topology changes in the anisotropic case.

The thesis then proceeds with a detailed comparative numerical analysis of convo- lution kernels that are the main tool to express anisotropy in the implicit approach. The output is a list of advantages and disadvantages of four main kernels proposed in the past, which is based on quantitative evaluation of their numerical properties, such as convergence order, required computational time, ability to deal with sharp corners, etc.

The main result of the thesis is then the construction and analysis of a numerical algorithm for solving a special type of a three-phase problem, namely the obstacle problem, where one of the phases is fixed throughout time. The algorithm is based on the linearization of the corresponding level-set partial differential equation in the fashion of Bence-Merriman-Osher algorithm, where the Gaussian kernel is replaced by a suitable convolution kernel to express the anisotropy and thresholding height is modified to preserve enclosed volume. Since the algorithm is designed in such a way that it decreases a nonlocal ”heat content” approximation of the interfacial energy, which Γ-converges to the perimeter functional, the author succeeded in proving its unconditional stability with respect to time step, under the condition that the Fourier transform of the adopted convolution kernel is positive.

Finally, numerical properties of the proposed scheme are studied through a series of numerical tests, including the convergence order, behavior of contact angles, and topology changes such as splitting and merging. Since the convergence at contact point is slower than at free interface, a modification of the algorithm is proposed to improve the convergence around triple junctions. The thesis concludes with a summary of its content and topics for possible future research.

この論文で使われている画像

参考文献

[1] B. Andrews. Volume-preserving anisotropic mean curvature flow, Indiana University Mathematics Journal, 50-2, pp. 783-827 (2001).

[2] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing, Applied Mathematical Sciences, Springer, 147, 1-288 (2002).

[3] W. Bao, W. Jiang, D. J. Srolovitz, and Y. Wang. Stable equilibria of anisotropic particles on substrates: A generalized Winterbottom construction, SIAM J. Appl. Math. 77 (6), 2093-2118 (2017).

[4] G. Barles and C. Georgelin. A simple proof of convergence for an approximation scheme for computing motions by mean curvature, SIAM J. Numer. Anal. 32 (2), 484–500 (1995).

[5] G. Bellettini and M. Paolini. Anisotropic motion by mean curvature in the context of Finsler geometry, Hokkaido Math. J. 25, 537–566 (1996).

[6] G. Bellettini, V. Caselles, A. Chambolle and M. Novaga. The volume preserving crystalline mean curvature flow of convex sets in RN , Journal de Mathe´matiques Pures et Applique´es, 92, 499-527 (2009).

[7] M. Bertagnolli, M. Marchese, and G. Jacucci. Modeling of particles impacting on a rigid substrate under plasma spraying conditions, Journal of Thermal Spray Tech- nology 4, 41–49 (1995).

[8] E. D. Bolker. A class of convex bodies, Trans. Amer. Math. Soc. 145, 323–345 (1969).

[9] E. Bonnetier, E. Bretin, and A. Chambolle. Consistency result for a non monotone scheme for anisotropic mean curvature flow, Interface Free Bound. 14, 1-35 (2012).

[10] L. Bronsard and F. Reitich. On three-phase boundary motion and the singular limit of a vector-valued Ginzburg–Landau equation, Arch. Rational Mech. Anal. 124, no. 4, 355-379 (1993).

[11] M. Burger, C. Stocker, and A. Voigt. Finite element-based level set methods for higher order flows, J. Sci. Comput., 35(2-3), 77–98 (2008).

[12] W. K. Burton, N. Cabrera and F. C. Frank. The growth of crystals and the equilib- rium structure of their surfaces, Trans. R. Soc. Lond. A 243, 299, (1951) .

[13] F. Catte, F. Dibos, and G. Koepfler. A morphological scheme for mean curvature motion and applications to anisotropic diffusion and motion of level sets, SIAMJ. Numer. Anal. 32(6), 1895–1909 (1995).

[14] A. Chambolle , An algorithm for mean curvature motion, Interfaces Free Bound. 6, 195–218 (2004).

[15] A. Chambolle, M. Morini, and M. Ponsiglione. Existence and uniqueness for a crystalline mean curvature flow. Comm. Pure Appl. Math. 70(6), 1023–1220 (2017).

[16] A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione. Generalized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE 12(3), 789-813 (2019).

[17] Y.G. Chen, Y. Giga and S. Goto. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geom. 33, 749–786 (1991).

[18] Chou. A blow-up criterion for the curve shortening flow by surface diffusion, Hokkaido Math. J. 32(1), 1–19 (2003).

[19] U. Clarenz, F. Haußer, M. Rumpf, A. Voigt, and U. Weikard. On level set for- mulations for anisotropic mean curvature flow and surface diffusion, in Multiscale Modeling in Epitaxial Growth, Internat. Ser. Numer. Math., Birkhauser, Basel, 149, 227–237 (2005).

[20] M.G. Crandall, H. Ishii and P.L. Lions. User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27, 1–67 (1992).

[21] K. Deckelnick, C. M. Elliott and V. M. Styles. Numerical diffusion-induced grain boundary motion, Interfaces Free Bound. 3, 393–414 (2001).

[22] K. Deckelnick, G. Dziuk, C. M. Elliott. Computation of geometric partial differen- tial equations and mean curvature flow, Acta Numerica 14, pp. 1–94 (2005).

[23] J.J.Eggleston, G.B.McFadden and P.W.Voorheesa. A phase-field model for highly anisotropic interfacial energy, Physica D: Nonlinear Phenomena, 150, 1-2, 91-103 (2001).

[24] Elliott, C.M., Garcke, H. Existence results for diffusive surface motion laws, Adv. Math. Sci. Appl. 7(1), 467–490 (1997).

[25] M. Elsey, and S. Esedoglu. Threshold dynamics for anisotropic surface energies, Math. Comput. 87(312), 1721-1756 (2017).

[26] J. Escher and G. Simonett. The volume preserving mean curvature flow near sphere, Proceedings of the Amer. math. Soc. 126-9, 2789-2796 (1998).

[27] K. Ecker. Heat equations in geometry and topology. Jahresber. Deutsch. Math.- Verein. 110(3), 117–141 (2008).

[28] S. Esedoglu, and F. Otto. Threshold dynamics for networks with arbitrary surface tensions, Commun. Pure Appl. Math. 68(5), 808-864 (2015).

[29] S. Esedoglu, and M. Jacobs. Convolution kernels and stability of threshold dynamics methods, SIAM J. Numer. Anal. 55(5), 2123-2150 (2017).

[30] S. Esedoglu, M. Jacobs, P. Zhang. Kernels with prescribed surface tension and mobility for threshold dynamics schemes, Journal of Computational Physics 337, 62-83 (2017).

[31] L. C. Evans and J. Spruck. Motion of level sets by mean curvature I, J. Differential Geom. 33, 636–681 (1991).

[32] L. C. Evans and J. Spruck. Motion of level sets by mean curvature II, Trans. Amer. Math. Soc. 330, 321–332 (1992).

[33] L. C. Evans and J. Spruck. Motion of level sets by mean curvature III, J. Geom. Anal. 2, 121–150 (1992).

[34] L. C. Evans and J. Spruck. Motion of level sets by mean curvature IV, J. Geom. Anal. 5, 77–114 (1995).

[35] L. C. Evans. Convergence of an algorithm for mean curvature motion, Indiana Univ. Math. J. 42 (2), 533–557 (1993).

[36] S. Gavhale and K. Sˇvadlenka. Dewetting dynamics of anisotropic particles: A level set numerical approach, Applications of Mathematics, first online, 1-29 (2021).

[37] M. Gage, R. S. Hamilton. The heat equation shrinking convex plane curves, J. Dif- ferential Geom. 23(1), 69-96 (1986).

[38] M.E. Gage. On an area-preserving evolution equation for plane curves, Nonlinear problems in geometry (Mobile, Ala., 1985), Contemp. Math., 51 , Amer. Math. Soc., Providence, RI, 51–62 (1986).

[39] H. Garcke. Curvature driven interface evolution, Jahresbericht der Deutschen Mathematiker-Vereinigung, 15, 63–100 (2013).

[40] Y. Giga. Surface Evolution Equations :A Level Set Approach, Monographs in Math- ematics, Vol.99, (2006).

[41] Y. Giga and K. Ito. On pinching of curves moved by surface diffusion, Commun. Appl. Anal. 2(3), 393–405 (1998).

[42] M. Grayson. The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26, 285–314 (1987).

[43] M. A. Grayson. A short note on the evolution of a surface by its mean curvature, Duke Math. J. 58(3), 555–558 (1989).

[44] J. Huang, F. Kim, A. R. Tao, S. Connor, and P. Yang. Spontaneous formation of nanoparticle stripe patterns through dewetting, Nature Materials 4, 896–900 (2005).

[45] G. Huisken. Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20, 237–266 (1984).

[46] G. Huisken. The volume preserving mean curvature flow, Journal fu¨r die reine und angewandte Mathematik, 382, 35-48 (1987).

[47] H. Ishii, G E. Pires, and P.E. Souganidis. Threshold dynamics type approximation schemes for propagating fronts, J. Math. Soc. Japan 51(2), 267-308 (1999).

[48] W. Jiang, W. Bao, C.V. Thompson, and D.J. Srolovitz. Phase field approach for simulating solid-state dewetting problems, Acta Mater. 60, 5578-5592 (2012).

[49] L. Kim and Y. Tonegawa. On the mean curvature f low of grain boundaries, Ann. Inst. Fourier, Grenoble 67 (1) (2017).

[50] I. Kim, D. Kwon and N. Pozar. On volume-preserving crystalline mean curvature flow, Mathematische Annalen, (2021).

[51] M. Kimura. Numerical analysis of moving boundary problems using the boundary tracking method, Japan J. Indust. Appl. Math. 14, 373–398 (1997).

[52] C. Mantegazza, M. Novaga and V.M. Tortorelli. Motion by curvature of planar networks, Ann. Scuola Norm. Sup. Pisa CI.Sci. 5 (3), 235-324 (2004).

[53] L. Mugnai, C. Seis, and E. Spadaro. Global solutions to the volume-preserving mean-curvature flow. Calc. Var. 55, 18 (2016).

[54] H. Kroner, M. Novaga , and P. Pozzi. Anisotropic Curvature Flow of Immersed Networks, Milan J. Math. Vol. 89, 147–186 (2021).

[55] T. Laux, and F. Otto. Convergence of the thresholding scheme for multi-phase mean- curvature flow, Calc. Var. 55(129), (2016).

[56] T. Laux, D. Swartz. Convergence of thresholding schemes incorporating bulk ef- fects. Interfaces Free Bound. 19 (2), 273–304 (2017).

[57] A. Magni, C. Mantegazza, and M. Novaga. Motion by curvature of planar networks, II, Ann. Sc. Norm. Super. Pisa Cl. Sci. 15 (5), 117-144 (2016).

[58] P. Mascarenhas. Diffusion Generated Motion by Mean Curvature, CAM report, Dept. of Math., University of California, Los Angeles, 92-33 (1992).

[59] B. Merriman, J.K. Bence, and S.J. Osher. Motion of multiple junctions: a level set approach, J. Comput. Phys. 112, 334-363 (1994).

[60] O. Misiats, and N. K. Yip. Convergence of space-time discrete threshold dynam- ics to anisotropic motion by mean curvature, Discrete and Continuous Dynamical Systems - A 36, 6379-6411 (2016).

[61] A.M. Oberman. A convergent monotone difference scheme for motion of level sets by mean curvature, Numer. Math., 99(2), 365–379 (2004).

[62] S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Al- gorithms based on Hamilton-Jacobi formulations, J. of Comp. Physics, 79-1, 12-49 (1988).

[63] S.J. Ruuth. Efficient algorithms for diffusion-generated motion by mean curvature, J. Comput. Phys. 144 , 2, 603–625 (1998).

[64] S.J. Ruuth, and B. Merriman. Convolution-generated motion and generalized Huy- gens’ principles for interface motion, SIAM J. Appl. Math. 60(3), 868-890, (2000).

[65] S. J. Ruuth, B.T.R. Wetton. A simple scheme for volume-preserving motion by mean curvature. J. Sci. Comput. 19(1–3), 373–384 (2003).

[66] D. Sˇevcˇovicˇ, and S. Yazaki. Evolution of plane curves with a curvature adjusted tangential velocity, Japan J. Indust. Appl. Math. 28(3), 413-442 (2011).

[67] K. Svadlenka, E. Ginder and S. Omata. A variational method for multiphase area- preserving interface motions, J. Comp. Appl. Math, 257, 157-179 (2014).

[68] K. Takasao. Existence of Weak Solution for Volume-Preserving Mean Curvature Flow via Phase Field Method, Indiana Uni. Math. Jour., 66-6, 2015-2035 (2017).

[69] C.V. Thompson. Solid-state dewetting of thin films, Annual Review of Materials Research 42(1), 399–434 (2012).

[70] Y. Wang, W. Jiang, W. Bao, and D.J. Srolovitz. Sharp interface model for solid- state dewetting problems with weakly anisotropic surface energies, Phys. Rev. B 91, 045303, (2015).

[71] W.L. Winterbottom. Equilibrium shape of a small particle in contact with a foreign substrate, Acta Metallurgica 15(2), 303-310 (1967).

[72] G. Wulff. Zur Frage der Geschwindigkeit des Wachsthums und der Auflo¨sung der Krystallfla¨chen, Zeitschrift fu¨r Kristallographie, Vol.34, pp. 449 (1901).

[73] X. Xu, D. Wang, X.P. Wang. An efficient threshold dynamics method for wetting on rough surfaces, Journal of Computational Physics 330, 510-528 (2017).

[74] H. Yagisita. Non-uniqueness of self-similar shrinking curves for an anisotropic cur- vature flow, Calc. Var. 26(1), 49–55 (2006).

参考文献をもっと見る