リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Heat‐killed Lactobacillus brevis KB290 attenuates visceral fat accumulation induced by high‐fat diet in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Heat‐killed Lactobacillus brevis KB290 attenuates visceral fat accumulation induced by high‐fat diet in mice

Watanabe J. Hashimoto N. Yin T. Sandagdorj B. Arakawa C. Inoue T. Suzuki S. 帯広畜産大学

2021.05.24

概要

Aims: This study aimed to evaluate the anti-adiposity effect of heat-killed Lactobacillus brevis KB290 originating from traditional Japanese fermented pickles in mice fed a high-fat diet (HFD).

Methods and Results: C57BL/6J mice were fed a normal-fat diet, HFD or HFD supplemented with heat-killed KB290 for 8 weeks. Epididymal and renal adipose tissue weights, as well as areas of epididymal adipocytes, were significantly lower in the mice fed a HFD supplemented with KB290 than in those fed an unsupplemented HFD. Mice whose diets were supplemented with KB290 had elevated adiponectin and b3-adrenergic receptor expression in epididymal adipose tissue and an accompanying higher serum free fatty acid level. Furthermore, the HFD-induced elevations in serum glucose, insulin and HOMA-IR were significantly suppressed by dietary supplementation with KB290. Amplicon sequencing of 16S rRNA genes revealed that KB290 ingestion altered the composition of the intestinal microbiota.

Conclusions: Heat-killed L. brevis KB290 suppressed diet-induced visceral fat accumulation and ameliorated diet-induced metabolic symptoms and intestinal gut microbiota modifications, suggesting possibility of novel paraprobiotic.

Significance and Impact of the Study: Heat-killed L. brevis KB290 is useable as a material to develop functional foods that attenuate visceral fat accumulation.

この論文で使われている画像

参考文献

de Almada, C.N., Almada, C.N., Martinez, R.C.R. and Sant’Ana, A.S. (2016) Paraprobiotics: evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 58, 96–114.

Bastien, M., Poirier, P., Lemieux, I. and Despr´es, J.P. (2014) Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis 56, 369–381.

Behnsen, J., Deriu, E., Sassone-Corsi, M. and Raffatellu, M. (2013) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3, a010074.

Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A. and Holmes, S.P. (2016) DADA2: high- resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583.

Cox, A.J., West, N.P. and Cripps, A.W. (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3, 207–215.

Cuevas-Gonz´alez, P.F., Liceaga, A.M. and Aguilar-Toal´a, J.E. (2020) Postbiotics and paraprobiotics: from concepts to applications. Food Res Int 136, 109502.

DeSantis, T.z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.l., Keller, K., Huber, T., Dalevi, D. et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069–5072.

Dong, N., Xue, C., Zhang, L., Zhang, T., Wang, C., Bi, C. and Shan, A. (2020) Oleanolic acid enhances tight junctions and ameliorates inflammation in Salmonella typhimurium- induced diarrhea in mice via the TLR4/NF-jB and MAPK pathway. Food Funct 11, 1122–1132.

Emanuela, F., Grazia, M., Marco, D.R., Maria Paola, L., Giorgio, F. and Marco, B. (2012) Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab 2012, 1–7.

Fang, L., Guo, F., Zhou, L., Stahl, R. and Grams, J. (2015) The cell size and distribution of adipocytes from subcutaneous and visceral fat is associated with type 2 diabetes mellitus in humans. Adipocyte 4, 273–279.

Farias, J.M., Maggi, R.M., Tromm, C.B., Silva, L.A., Luciano, T.F., Marques, S.O., Lira, F.S., de Souza, C.T. et al. (2012) Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. Lipids Health Dis 11, 134.

Flanagan, A.M., Brown, J.L., Santiago, C.A., Aad, P.Y., Spicer, L.J. and Spicer, M.T. (2008) High-fat diets promote insulin resistance through cytokine gene expression in growing female rats. J Nutr Biochem 19, 505–513.

Fukizawa, S., Yamashita, M., Wakabayashi, K.-I., Fujisaka, S., Tobe, K., Nonaka, Y. and Murayama, N. (2020) Anti- obesity effect of a hop-derived prenylflavonoid isoxanthohumol in a high-fat diet-induced obese mouse model. Biosci Microbiota Food Heal 39, 175–182.

Garofalo, C., Osimani, A., Milanovi´c, V., Taccari, M., Aquilanti, L. and Clementi, F. (2015) The occurrence of beer spoilage lactic acid bacteria in craft beer production. J Food Sci 80, M2845–M2852.

Higashikawa, F., Noda, M., Awaya, T., Danshiitsoodol, N., Matoba, Y., Kumagai, T. and Sugiyama, M. (2016) Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: a randomized, double-blind, placebo-controlled clinical trial. Eur J Clin Nutr 70, 582–587.

Hutcheson, R. and Rocic, P. (2012) The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: the great exploration. Exp Diabetes Res 2012, 1–13.

Jocken, J.W.E., Hern´andez, M.A.G., Hoebers, N.T.H., van der Beek, C.M., Essers, Y.P.G., Blaak, E.E. and Canfora, E.E. (2018) Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front Endocrinol (Lausanne) 8, 1–9.

Kim, D.-H., Jeong, D., Kang, I.-B., Kim, H., Song, K.-Y. and Seo, K.-H. (2017) Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-a in adipose tissue. Mol Nutr Food Res 61, 1700252.

Kim, S.-w., Suda, W., Kim, S., Oshima, K., Fukuda, S., Ohno, H., Morita, H. and Hattori, M. (2013) Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 20, 241–253.

Lee, C.J., Sears, C.L. and Maruthur, N. (2019) Gut microbiome and its role in obesity and insulin resistance. Ann N Y Acad Sci 1461, 1–16.

Liao, C.-C., Ou, T.-T., Wu, C.-H. and Wang, C.-J. (2013) Prevention of diet-induced hyperlipidemia and obesity by caffeic acid in C57BL/6 mice through regulation of hepatic lipogenesis gene expression. J Agric Food Chem 61, 11082–11088.

Masood, M.I., Qadir, M.I., Shirazi, J.H. and Khan, I.U. (2011) Beneficial effects of lactic acid bacteria on human beings. Crit Rev Microbiol 37, 91–98.

Masumoto, S., Terao, A., Yamamoto, Y., Mukai, T., Miura, T. and Shoji, T. (2016) Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci Rep 6, 31208.

Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985) Homeostasis model assessment: insulin resistance and b-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419.

McDonald, D., Price, M.N., Goodrich, J., Nawrocki, E.P., DeSantis, T.Z., Probst, A., Andersen, G.L., Knight, R. et al. (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6, 610–618.

Meigs, J.B., Rutter, M.K., Sullivan, L.M., Fox, C.S., D’Agostino, R.B. and Wilson, P.W.F. (2007) Impact of insulin resistance on risk of type 2 diabetes and cardiovascular disease in people with metabolic syndrome. Diabetes Care 30, 1219–1225.

Nobuta, Y., Inoue, T., Suzuki, S., Arakawa, C., Yakabe, T., Ogawa, M. and Yajima, N. (2009) The efficacy and the safety of Lactobacillus brevis KB290 as a human probiotics. Int J Probiotic Prebiotic 4, 263–270.

Ormerod, K.L., Wood, D.L.A., Lachner, N., Gellatly, S.L., Daly, J.N., Parsons, J.D., Dal’Molin, C.G.O., Palfreyman, R.W. et al. (2016) Genomic characterization of the uncultured Bacteroidales family S24–7 inhabiting the guts of homeothermic animals. Microbiome 4, 1–17.

Park, S., Ji, Y., Jung, H.-Y., Park, H., Kang, J., Choi, S.-H., Shin, H., Hyun, C.-K. et al. (2017) Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl Microbiol Biotechnol 101, 1605–1614.

Parvez, S., Malik, K.A., Ah Kang, S. and Kim, H.Y. (2006) Probiotics and their fermented food products are beneficial for health. J Appl Microbiol 100, 1171–1185.

Pedret, A., Valls, R.M., Caldero´n-P´erez, L., Llaurado´, E., Companys, J., Pla-Pag`a, L., Moragas, A., Mart´ın-Luj´an, F. et al. (2019) Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial. Int J Obes 43, 1863–1868.

Rosen, E.D. and Spiegelman, B.M. (2006) Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444, 847–853.

Sanz, Y., Santacruz, A. and Gauffin, P. (2010) Gut microbiota, obesity and metabolic disorders. Proc Nutr Society 69, 434–441.

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S. and Huttenhower, C. (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12, R60.

Serino, M., Luche, E., Gres, S., Baylac, A., Berg´e, M., Cenac, C., Waget, A., Klopp, P. et al. (2012) Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61, 543–553.

Shin, H.S., Park, S.Y., Lee, D.K., Kim, S.A., An, H.M., Kim, J.R., Kim, M.J., Cha, M.G. et al. (2010) Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Arch Pharm Res 33, 1425–1431.

Skurk, T., Alberti-Huber, C., Herder, C. and Hauner, H. (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92, 1023–1033.

Tomita, S., Nakamura, T. and Okada, S. (2018) NMR- and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves. Food Chem 258, 25–34.

Wolowczuk, I., Verwaerde, C., Viltart, O., Delanoye, A., Delacre, M., Pot, B. and Grangette, C. (2008) Feeding our immune system: impact on metabolism. Clin Dev Immunol 2008, 639803.

Yang, C., Xu, Z., Deng, Q., Huang, Q., Wang, X. and Huang, F. (2020) Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice. Food Res Int 131, 108994.

Yin, T., Bayanjargal, S., Fang, B., Inaba, C., Mutoh, M., Kawahara, T. et al. (2020) Lactobacillus plantarum Shinshu N-07 isolated from fermented Brassica rapa L. attenuates visceral fat accumulation induced by high-fat diet in mice. Benef Microbes 11, 655–667.

Yoda, K., Sun, X., Kawase, M., Kubota, A., Miyazawa, K., Harata, G. et al. (2015) A combination of probiotics and whey proteins enhances anti-obesity effects of calcium and dairy products during nutritional energy restriction in aP2-agouti transgenic mice. Br J Nutr 113, 1689–1696.

Zhao, L., Zhang, Q., Ma, W., Tian, F., Shen, H. and Zhou, M. (2017) A combination of quercetin and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota. Food Funct 8, 4644–4656.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る