リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bombardier beetles repel invasive bullfrogs」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bombardier beetles repel invasive bullfrogs

Sugiura, Shinji 杉浦, 真治 スギウラ, シンジ Date, Tomoki 神戸大学

2022.09.15

概要

Invasive non-native predators negatively affect native species; however, some native species can survive the predation pressures of invasive species by using pre-existing antipredator strategies or evolving defenses against invasive predators. The American bullfrog Lithobates catesbeianus (Anura: Ranidae) has been intentionally introduced to many countries and regions, and has impacted native animals through direct predation. Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) discharge chemicals at a temperature of approximately 100 °C from the tip of the abdomen when they are attacked by predators. This “bombing” can successfully repel predators. However, adults of a native bombardier beetle Pheropsophus (Stenaptinus) occipitalis jessoensis have been reportedly found in the gut contents of the introduced bullfrog L. catesbeianus in Japan. These records suggest that the invasive bullfrog L. catesbeianus attacks the native bombardier beetle P. occipitalis jessoensis under field conditions in Japan; however, the effectiveness of the bombing defense against invasive bullfrogs is unclear. To test the effectiveness of the bombing defense against bullfrogs, we investigated the behavioral responses of L. catesbeianus juveniles to P. occipitalis jessoensis adults under laboratory conditions. Contrary to previous gut content results, almost all the bullfrogs (96.3%) rejected bombardier beetles before swallowing them; 88.9% rejected the beetles after being bombed, and 7.4% stopped attacking the beetles before being bombed. Only 3.7% successfully swallowed and digested the beetle. All of the beetles collected from non-bullfrog-invaded sites could deter bullfrogs, suggesting that the pre-existing defenses of bombardier beetles played an essential role in repelling bullfrogs. When treated beetles that were unable to discharge hot chemicals were provided, 77.8% of bullfrogs successfully swallowed and digested the treated beetles. These results indicate that bombing is important for the successful defense of P. occipitalis jessoensis against invasive bullfrogs. Although invasive bullfrogs have reportedly impacted native insect species, P. occipitalis jessoensis has an existing defense mechanism strong enough to repel the invasive predators.

この論文で使われている画像

参考文献

Adriaens T, Devisscher S, Louette G. 2013. Risk analysis report of non-native organisms in Belgium: risk analysis of American bullfrog Lithobates catesbeianus (Shaw). Brussel: Instituut voor Natuur- en Bosonderzoek.

Aneshansley DT, Eisner T, Widom JM, Widom B. 1969. Biochemistry at 100 ◦C: explosive secretory discharge of bombardier beetles (Brachinus). Science 165(3888):61–63 DOI 10.1126/science.165.3888.61.

Arndt EM, Moore W, Lee WK, Ortiz C. 2015. Mechanistic origins of bombardier beetle (Brachinini) explosion-induced defensive spray pulsation. Science 348(6234):563–567 DOI 10.1126/science.1261166.

Balfour PS, Morey SR. 1999. Prey selection by juvenile bullfrogs in a constructed vernal pool complex. Transactions of the Western Section of the Wildlife Society 35:34–40.

Barrasso DA, Cajade R, Nenda S, Baloriani G, Herrera R. 2009. Introduction of the American bullfrog Lithobates catesbeianus (Anura: Ranidae) in natural and modified environments: an increasing conservation problem in Argentina. South American Journal of Herpetology 4(1):69–75 DOI 10.2994/057.004.0109.

Bissattini AM, Buono V, Vignoli L. 2018. Field data and worldwide literature review reveal that alien crayfish mitigate the predation impact of the American bullfrog on native amphibians. Aquatic Conservation: Marine and Freshwater Ecosystems 28(6):1465–1475 DOI 10.1002/aqc.2978.

Bissattini AM, Buono V, Vignoli L. 2019. Disentangling the trophic interactions between American bullfrogs and native anurans: complications resulting from post-metamorphic ontogenetic niche shifts. Aquatic Conservation: Marine and Freshwater Ecosystems 29(2):270–281 DOI 10.1002/aqc.3023.

Bissattini AM, Vignoli L. 2017. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biological Invasions 19(9):2633–2646 DOI 10.1007/s10530-017-1473-6.

Boelter RA, Kaefer IL, Both C, Cechin S. 2012. Invasive bullfrogs as predators in a Neotropical assemblage: what frog species do they eat? Animal Biology 62(4):397–408 DOI 10.1163/157075612X634111.

Bonacci T, Aloise G, Brandmayr P, Brandmayr TZ, Capula M. 2008. Testing the predatory behaviour of Podarcis sicula (Reptilia: Lacertidae) towards aposematic and non-aposematic preys. Amphibia-Reptilia 29(3):449–453 DOI 10.1163/156853808785111986.

Bruneau M, Magnin E. 1980. Croissance, nutrition et reproduction des souaouarons Rana catesbeiana Shaw (Amphibia Anura) des Laurentides au nord de Montréal. Canadian Journal of Zoology 58(2):175–183 DOI 10.1139/z80-019.

Carthey AJR, Banks PB. 2014. Naïveté in novel ecological interactions: lessons from theory and experimental evidence. Biological Reviews 89(4):932–949 DOI 10.1111/brv.12087.

Clarkson RW, DeVos JCJ. 1986. The bullfrog, Rana catesbeiana Shaw, in the lower Colorado River, Arizona-California. Journal of Herpetology 20(1):42–49 DOI 10.2307/1564123.

David P, Thébault E, Anneville O, Duyck PF, Chapuis E. 2017. Impacts of invasive species on food webs: a review of empirical data. Advances in Ecological Research 56(2):1–60 DOI 10.1016/bs.aecr.2016.10.001.

Davis DR, Epp KJ, Gabor CR. 2012. Predator generalization decreases the effect of introduced predators in the San Marcos salamander, Eurycea nana. Ethology 118(12):1191–1197 DOI 10.1111/eth.12025.

Dean J. 1979. Defensive reaction time of bombardier beetles: an investigation of the speed of a chemical defense. Journal of Chemical Ecology 5(5):691–701 DOI 10.1007/BF00986554.

Dean J. 1980. Encounters between bombardier beetles and two species of toads (Bufo americanus, B. marinus): speed of prey-capture does not determine success. Journal of Comparative Physiology 135(1):41–50 DOI 10.1007/BF00660180.

Doherty TS, Glen AS, Nimmo DG, Ritchie EG, Dickman CR. 2016. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America 113(40):11261–11265 DOI 10.1073/pnas.1602480113.

Dontchev K, Matsui M. 2016. Food habits of the American bullfrog Lithobates catesbeianus in the city of Kyoto, central Japan. Current Herpetology 35(2):93–100 DOI 10.5358/hsj.35.93.

Eisner T. 1958. The protective role of the spray mechanism of the bombardier beetle, Brachynus ballistarius Lec. Journal of Insect Physiology 2(3):215–220 DOI 10.1016/0022-1910(58)90006-4.

Eisner T, Aneshansley DJ, del Campo ML, Eisner M, Frank JH, Deyrup M. 2006. Effect of bombardier beetle spray on a wolf spider: repellency and leg autotomy. Chemoecology 16(4):185–189 DOI 10.1007/s00049-006-0346-8.

Eisner T, Dean J. 1976. Ploy and counterploy in predator-prey interactions: orb-weaving spiders versus bombardier beetles. Proceedings of the National Academy of Sciences of the United States of America 73(4):1365–1367 DOI 10.1073/pnas.96.17.9705.

Eisner T, Eisner M, Siegler M. 2005. Secret weapons: defenses of insects, spiders, scorpions, and other many-legged creatures. Cambridge: The Belknap Press of the Harvard University Press. Eisner T, Meinwald J. 1966. Defensive secretions of arthropods. Science 153(3742):1341–1350 DOI 10.1126/science.153.3742.1341.

Fedorenko DN. 2021. Stenaptinus (Coleoptera: Carabidae: Brachininae) of Vietnam. Note 3. Russian Entomology Journal 30(3):252–263 DOI 10.15298/rusentj.30.3.02.

Ficetola GF, Coïc C, Detaint M, Berroneau M, Lorvelec O, Miaud C. 2007. Pattern of distribution of the American bullfrog Rana catesbeiana in Europe. Biological Invasions 9(7):767–772 DOI 10.1007/s10530-006-9080-y.

Ficetola GF, Thuiller W, Miaud C. 2007. Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog. Diversity and Distributions 13(4):476–485 DOI 10.1111/j.1472-4642.2007.00377.x.

Flynn LM, Kreofsky TM, Sepulveda AJ. 2017. Introduced American bullfrog distribution and diets in Grand Teton National Park. Northwest Science 91(3):244–256 DOI 10.3955/046.091.0305.

Fritts TH, Rodda GH. 1998. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annual Review of Ecology and Systematics 29:113–140 DOI 10.1146/ANNUREV.ECOLSYS.29.1.113.

Fujisawa T, Lee CM, Ishii M. 2012. Species diversity of ground beetle assemblages in the distinctive landscapes of the Yodo River flowing through northern Osaka Prefecture, central Japan. Japanese Journal of Environmental Entomology and Zoology 23(2):89–100 DOI 10.11257/jjeez.23.89.

Fulk FD, Whitaker JO Jr. 1968. The food of Rana catebeiana in three habitats in Owen Country, Indiana. Proceedings of the Indiana Academy of Science 78:491–496.

Giglio A, Vommaro ML, Brandmayr P, Talarico F. 2021. Pygidial glands in Carabidae, an overview of morphology and chemical secretion. Life 11(6):562 DOI 10.3390/life11060562.

Giovanelli JGR, Haddad CFB, Alexandrino J. 2008. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biological Invasions 10(5):585–590 DOI 10.1007/s10530-007-9154-5.

Gobel N, Laufer G, Cortizas S. 2019. Changes in aquatic communities recently invaded by a top predator: evidence of American bullfrogs in Aceguá, Uruguay. Aquatic Sciences 81(1):8 DOI 10.1007/s00027-018-0604-1.

Goldschmidt T, Witte F, Wanink J. 1993. Cascading effects of the introduced Nile perch on the detritivorous/phytoplanktivorous species in the sublittoral areas of Lake Victoria. Conservation Biology 7(3):686–700 DOI 10.1046/j.1523-1739.1993.07030686.x.

Govindarajulu P, Price WS, Anholt BR. 2006. Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged? Journal of Herpetology 40(2):249–260 DOI 10.1670/68-05A.1.

Groffen J, Kong S, Jang Y, Borzée A. 2019. The invasive American bullfrog (Lithobates catesbeianus) in the Republic of Korea: history and recommendations for population control. Management of Biological Invasions 10(3):517–535 DOI 10.3391/mbi.2019.10.3.08.

Habu A, Sadanaga K. 1965. Illustrations for identification of larvae of the Carabidae found in cultivated fields and paddy-fields (III). Bulletin of the National Institute of Agricultural Sciences, Series C: Plant Pathology and Entomology 19:81–216 [in Japanese with English summary].

Hirai T. 2004. Diet composition of introduced bullfrog, Rana catesbeiana, in the Mizorogaike Pond of Kyoto, Japan. Ecological Research 19(4):375–380 DOI 10.1111/j.1440-1703.2004.00647.x.

Hirai T. 2005. On the giant water bug, Lethocerus deyrolli, found in stomach contents of a bullfrog, Rana catesbeiana. Bulletin of Kansai Organization for Nature Conservation 27(1):57–58 (in Japanese with English summary).

Hirai T, Inatani Y. 2008. Predation by Rana catesbeiana on an adult male of R. porosa brevipoda. Bulletin of the Herpetological Society of Japan 2008(1):6–7 [in Japanese].

Ishitani M, Yano K. 1994. Species composition and seasonal activities of ground beetles (Coleoptera) in a fig orchard. Japanese Journal of Entomology 62(1):201–210.

Jancowski K, Orchard SA. 2013. Stomach contents from invasive American bullfrogs Rana catesbeiana (= Lithobates catesbeianus) on southern Vancouver Island, British Columbia, Canada. NeoBiota 16(2):17–37 DOI 10.3897/neobiota.16.3806.

Johovic I, Gama M, Banha F, Tricarico E, Anastácio PM. 2020. A potential threat to amphibians in the European Natura 2000 network: forecasting the distribution of the American bullfrog Lithobates catesbeianus. Biological Conservation 245(6):108551 DOI 10.1016/j.biocon.2020.108551.

Kambayashi C, Uto T, Shioji T, Kurabayashi A, Shimizu N. 2016. Amphibian fauna in the Higashi-Hiroshima Campus, Hiroshima University. Bulletin of the Hiroshima University Museum 8:17–29 (in Japanese with English Abstract).

Kanehisa K. 1996. Secretion of defensive substance by Carabidae and Brachinidae. Bulletin of the Research Institute for Bioresources, Okayama University 4(1):9–23 [in Japanese with English summary].

Kanehisa K, Murase M. 1977. Comparative study of the pygidial defensive systems of carabid beetles. Applied Entomology and Zoology 12(3):225–235 DOI 10.1303/aez.12.225.

Kats LB, Ferrer RP. 2003. Alien predators and amphibian declines: review of two decades of science and the transition to conservation. Diversity and Distributions 9(2):99–110 DOI 10.1046/j.1472-4642.2003.00013.x.

Kenis M, Auger-Rozenberg MA, Roques A, Timms L, Péré C, Cock MJW, Settele J, Augustin S, Lopez-Vaamonde C. 2009. Ecological effects of invasive alien insects. Biological Invasions 11(1):21–45 DOI 10.1007/s10530-008-9318-y.

Kojima W, Yamamoto R. 2020. Defense of bombardier beetles against avian predators. The Science of Nature 107(4):36 DOI 10.1007/s00114-020-01692-z.

Korschgen LJ, Moyle DL. 1955. Food habits of the bullfrog in central Missouri farm ponds. The American Midland Naturalist 54(2):332–341 DOI 10.2307/2422571.

Kromp B. 1999. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems and Environment 74(1–3):187–228 DOI 10.1016/S0167-8809(99)00037-7.

Krupa JJ. 2002. Temporal shift in diet in a population of American bullfrog (Rana catesbeiana) in Carlsbad Caverns National Park. The Southwestern Naturalist 47(3):461–467 DOI 10.2307/3672506.

Kupferberg SJ. 1997. The role of larval diet in anuran metamorphosis. American Zoologist 37(2):146–159 DOI 10.1093/icb/37.2.146.

Laufer G, Gobel N, Berazategui M, Zarucki M, Cortizas S, Soutullo A, Martinez-Debat C, de Sá RO. 2021. American bullfrog (Lithobates catesbeianus) diet in Uruguay compared with other invasive populations in Southern South America. North-Western Journal of Zoology 17(1):e211502.

Leivas PT, Leivas FWT, Moura MO. 2012. Diet and trophic niche of Lithobates catesbeianus (Amphibia: Anura). Zoologia 29(5):405–412 DOI 10.1590/S1984-46702012000500003.

Li Y, Ke Z, Wang Y, Blackburn TM. 2011. Frog community responses to recent American bullfrog invasions. Current Zoology 57(1):83–92 DOI 10.1093/czoolo/57.1.83.

Liu X, Luo Y, Chen J, Guo Y, Bai C, Li Y. 2015. Diet and prey selection of the invasive American bullfrog (Lithobates catesbeianus) in southwestern China. Asian Herpetological Research 6(1):34–44 DOI 10.16373/j.cnki.ahr.140044.

Lowe S, Browne M, Boudjelas S, De Poorter M. 2000. 100 of the world’s worst invasive alien species: a selection from the global invasive species database. Auckland: IUCN/SSC Invasive Species Specialist Group (ISSG).

Matsumoto R, Suwabe S, Karube H. 2020. Diet of Xenopus laevis and Lithobates catesbeianus trapped in Nakaogino Area, Atsugi, Kanagawa Prefecture, Japan. Bulletin of the Kanagawa Prefectural Museum (Natural Science) 49:85–99 [in Japanese with English abstract].

McGruddy RA, Howse MWF, Haywood J, Ward CJI, Staufer TB, Hayek-Williams M, Toft RJ, Lester PJ. 2021. Invasive paper wasps have strong cascading effects on the host plant of monarch butterflies. Ecological Entomology 46(2):459–469 DOI 10.1111/een.12992.

Melotto A, Ficetola GF, Alari E, Romagnoli S, Manenti R. 2021. Visual recognition and coevolutionary history drive responses of amphibians to an invasive predator. Behavioral Ecology 32(6):1352–1362 DOI 10.1093/beheco/arab101.

Mori I. 2008. Predation by introduced bullfrog Rana catesbeiana on a breeding male of Rhacophorus schlegelii and the other animals. Bulletin of the Okayama Prefecture Nature Conservation Center 16:61–62 [in Japanese].

Nakamura Y, Tominaga A. 2021. Diet of the American bullfrog Lithobates catesbeianus naturalized on Okinawajima, Ryukyu Archipelago, Japan. Current Herpetology 40(1):40–53 DOI 10.5358/hsj.40.40.

Oda FH, Guerra V, Grou E, de Lima LD, Proença HC, Gambale PG, Takemoto RM, Teixeira CP, Campião KM, Ortega JCG. 2019. Native anuran species as prey of invasive American bullfrog Lithobates catesbeianus in Brazil: a review with new predation records. Amphibian & Reptile Conservation 13(2):217–226.

O’Dowd DJ, Green PT, Lake PS. 2003. Invasional ‘meltdown’ on an oceanic island. Ecology Letters 6(9):812–817 DOI 10.1046/j.1461-0248.2003.00512.x.

Ohwaki A, Kaneko Y, Ikeda H. 2015. Seasonal variability in the response of ground beetles (Coleoptera: Carabidae) to a forest edge in a heterogeneous agricultural landscape in Japan. European Journal of Entomology 112(1):135–144 DOI 10.14411/eje.2015.022.

Ortíz-Serrato L, Ruiz-Campos G, Valdez-Villavicencio JH. 2014. Diet of the exotic American bullfrog, Lithobates catesbeianus in a stream of northwestern Baja California, Mexico. Western North American Naturalist 74(1):116–122 DOI 10.3398/064.074.0112.

Park CD, Lee CW, Lim JC, Yang BG, Lee JH. 2018. A study on the diet items of American bullfrog (Lithobates catesbeianus) in Ga-hang wetland. Korea Korean Journal of Environment and Ecology 32(1):55–65 [in Korean with English abstract] DOI 10.13047/KJEE.2018.32.1.55.

Pryor GS. 2003. Growth rates and digestive abilities of bullfrog tadpoles (Rana catesbeiana) fed algal diets. Journal of Herpetology 37(3):560–566 DOI 10.1670/153-02N.

Quiroga LB, Moreno MD, Cataldo AA, Aragón-Traverso JH, Pantano MV, Olivares JPS, Sanabria EA. 2015. Diet composition of an invasive population of Lithobates catesbeianus (American Bullfrog) from Argentina. Journal of Natural History 49(27–28):1703–1716 DOI 10.1080/00222933.2015.1005711.

R Core Team. 2018. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/.

Rainio J, Niemelä J. 2003. Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation 12(3):487–506 DOI 10.1023/A:1022412617568.

Raney EC, Ingram WM. 1941. Growth of tagged frogs (Rana catesbeiana Shaw and Rana clamitans Daudin) under natural conditions. The American Midland Naturalist 26(1):201–206 DOI 10.2307/2420767.

Rogers HS, Buhle ER, HilleRisLambers J, Fricke EC, Miller RH, Tewksbury JJ. 2017. Effects of an invasive predator cascade to plants via mutualism disruption. Nature Communications 8(1):14557 DOI 10.1038/ncomms14557.

Ruibal M, Laufer G. 2012. Bullfrog Lithobates catesbeianus (Amphibia: Ranidae) tadpole diet: description and analysis for three invasive populations in Uruguay. Amphibia-Reptilia 33(3–4):355–363 DOI 10.1163/15685381-00002838.

Sarashina M, Yoshida T. 2021. Diet composition of the invasive American bullfrog (Lithobates catesbeianus) in Onuma Quasi-National Park, Hokkaido, Japan. Current Herpetology 40(1):77–82 DOI 10.5358/hsj.40.77.

Sato R, Nishihara S. 2017. Impacts of invasive bullfrogs and the control strategy. In: Takahashi K, ed. Recovering fish. Tokyo: Kouseisha, 68–80 [in Japanese].

Sato T. 2016. Reptiles and amphibians distributed on the periphery of an army cemetery in Nara City. Annual Bulletin of Oyasato Institute for the Study of Religion, Tenri University 22:49–74 [in Japanese with English summary].

Silva ET, Reis EP, Feio RN, Filho OPR. 2009. Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) in Viçosa, Minas Gerais state, Brazil. South American Journal of Herpetology 4(3):286–294 DOI 10.2994/057.004.0312.

Stewart MM, Sandison P. 1972. Comparative food habits of sympatric mink frogs, bullfrogs, and green frogs. Journal of Herpetology 3(4)):241–244 DOI 10.2307/1562781.

Strauss SY, Lau JA, Carroll SP. 2006. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecology Letters 9(3):357–374 DOI 10.1111/j.1461-0248.2005.00874.x.

Sugiura S. 2016. Impacts of introduced species on the biota of an oceanic archipelago: the relative importance of competitive and trophic interactions. Ecological Research 31(2):155–164 DOI 10.1007/s11284-016-1336-0.

Sugiura S. 2018. Anti-predator defences of a bombardier beetle: is bombing essential for successful escape from frogs? PeerJ 6:e5942 DOI 10.7717/peerj.5942.

Sugiura S. 2020a. Predators as drivers of insect defenses. Entomological Science 23(3):316–337 DOI 10.1111/ens.12423.

Sugiura S. 2020b. Active escape of prey from predator vent via the digestive tract. Current Biology 30(15):R867–R868 DOI 10.1016/j.cub.2020.06.026.

Sugiura S. 2021. Beetle bombing always deters praying mantises. PeerJ 9(3888):e11657 DOI 10.7717/peerj.11657.

Sugiura S, Sato T. 2018. Successful escape of bombardier beetles from predator digestive systems. Biology Letters 14(2):20170647 DOI 10.1098/rsbl.2017.0647.

Tawa K, Sagawa S. 2017. Breeding habitats of frogs in paddy field and fallow field biotopes in Shounji (Toyooka City, Hyogo Prefecture). Yaseihukki 5:29–38 [in Japanese with English Abstract].

Vermeij GJ. 1982. Phenotypic evolution in a poorly dispersing snail after arrival of a predator. Nature 299(5881):349–350 DOI 10.1038/299349a0.

Vrcibradic D, Diaz A, Cosendey BN, Nascimento BB, Borges-Júnior VNT. 2017. Trichodactylus dentatus (Crustacea, Decapoda, Trichodactylidae) and other prey of a large adult of the exotic American bullfrog, Lithobates catesbeianus (Ranidae), caught in a disturbed habitat in southeastern Brazil. Herpetology Notes 10:375–378.

Werner EE, Wellborn GA, McPeek MA. 1995. Diet composition in postmetamorphic bullfrogs and green frogs: implications for interspecific predation and competition. Journal of Herpetology 29(4):600–607 DOI 10.2307/1564744.

Wu Z, Li Y, Wang Y, Adams MJ. 2005. Diet of introduced bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island, China. Journal of Herpetology 39(4):668–674 DOI 10.1670/78-05N.1.

Yahiro K, Fujimoto T, Tokuda M, Yano K. 1992. Species composition and seasonal abundance of ground beetles (Coleoptera) in paddy fields. Japanese Journal of Entomology 60(4):805–813.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る