リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on salinity stress responses of pearl millet (Pennisetum glaucum L.)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on salinity stress responses of pearl millet (Pennisetum glaucum L.)

SHINDE, HARSHRAJ SUBHASH 東京大学 DOI:10.15083/0002002048

2021.10.04

概要

Pearl millet (Pennisetum glaucum (L.) R. Br.) plays important role in food security in arid and semi-arid areas of India and Africa. It is well known for its abiotic stress tolerance capacity including drought, salinity and high temperature. However, it lags behind the other cereals in terms of research and development. To study and research the salinity stress tolerance potential of pearl millet we used different biotechnological approaches. The aim of study was to understand the molecular and biochemical responses of pearl millet to salinity stress.

 Our transcriptome (RNA sequencing) analysis able to find out salinity stress responsive genes and pathways of pearl millet. A comparative transcriptome analysis between the salinity tolerant (ICMB 01222) and salinity susceptible (ICMB 081) lines was conducted under control and salinity conditions. Physiological studies revealed that the tolerant line ICMB 01222 had higher growth rate and ability to accumulate higher amount of sugar in leaves under salinity stress. A total of 11,627 differentially expressed genes (DEGs) were identified in both lines. Unigenes involved in ubiquitin-mediated proteolysis and phenylpropanoid biosynthesis pathways were upregulated in the tolerant line. Unigenes encoding SBPs (SQUAMOSA promoter binding proteins), which are plant-specific transcription factors, were differentially expressed only in the tolerant line. Functional unigenes and pathways that are identified can provide useful clues for improving salinity stress tolerance in pearl millet.

 We also performed the small RNA sequencing to find out the salinity stress responsive small RNAs, especially MicroRNAs (miRNAs). In total, 81 miRNAs were identified as a salinity stress responsive miRNA (30 miRNAs as an up-regulated miRNAs and 51 miRNAs as a down-regulated miRNAs). Interestingly, significantly upregulated pearl millet miRNAs belong to miR159 family, which was previously reported to be involved in various abiotic stress responses. In total, 448 mRNAs genes of pearl millet were identified as target genes. Among these target genes 122 mRNAs were identified as a transcription factor (25 % of total target gene). Pathway analyses showed that differentially expressed miRNAs and their target genes might regulates Auxin responsive pathway. This suggests that miRNAs play an important role in salinity stress tolerance in pearl millet. This result could be used to improve salinity stress tolerance in upland crops.

 In our transcriptome analysis we discovered many salinity stress responsive gene. We performed the functional characterization of one of the salinity stress responsive gene called, PgNAC21 (NAC transcription factor 21). Gene expression analysis revealed that PgNAC21 expression is induced by salinity stress and abscisic acid (ABA) treatment. Relative to control plants, Arabidopsis plants overexpressing PgNAC21 exhibited better seed germination, heavier fresh weight and greater root length under salinity stress. Overexpression of PgNAC21 in Arabidopsis plants also enhanced the expression of stress-responsive genes. Our data demonstrate that PgNAC21 functions as a stress-responsive NAC TF and can be utilized in transgenic approaches for developing salinity stress tolerance in crop plants. Our all studies generate useful information to understand the molecular mechanism of salinity stress tolerance in pearl millet. This information can be used by breeders to breed new salinity stress tolerant crop plants by transgenic approaches.

この論文で使われている画像

参考文献

Abdelrahman, M., Jogaiah, S., Burritt, D.J., Tran, L.S.P., 2018. Legume genetic resources and transcriptome dynamics under abiotic stress conditions. Plant Cell Environ. 41, 1972–1983. https://doi.org/10.1111/pce.13123

Agarwal, P., Agarwal, P.K., Joshi, A.J., Sopory, S.K., Reddy, M.K., 2010. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol. Biol. Rep. 37, 1125–35. https://doi.org/10.1007/s11033-009-9885-8

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 Ashkani, S., Rafii, M.Y., Shabanimofrad, M., Miah, G., Sahebi, M., Azizi, P., Tanweer, F.A.,

Akhtar, M.S., Nasehi, A., 2015. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop. Front. Plant Sci. 6, 1–14. https://doi.org/10.3389/fpls.2015.00886

Aubert, Y., Vile, D., Pervent, M., Aldon, D., Ranty, B., Simonneau, T., Vavasseur, A., Galaud, J.P., 2010. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant Cell Physiol. 51, 1975–1987. https://doi.org/10.1093/pcp/pcq155

Bai, Q., Wang, X., Chen, X., Shi, G., Liu, Z., Guo, C., Xiao, K., 2018. Wheat miRNA TaemiR408 Acts as an Essential Mediator in Plant Tolerance to Pi Deprivation and Salt Stress via Modulating Stress-Associated Physiological Processes. Front. Plant Sci. 9, 1–17. https://doi.org/10.3389/fpls.2018.00499

Barrero, J.M., Rodríguez, P.L., Quesada, V., Piqueras, P., Ponce, M.R., Micol, J.L., 2006. Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant, Cell Environ. 29, 2000–2008. https://doi.org/10.1111/j.1365-3040.2006.01576.x

Bielach, A., Hrtyan, M., Tognetti, V.B., 2017. Plants under stress: Involvement of auxin and cytokinin. Int. J. Mol. Sci. 18. https://doi.org/10.3390/ijms18071427

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–20. https://doi.org/10.1093/bioinformatics/btu170

Bonnet, E., Peer, Y. Van De, 2006. Tansley review The small RNA world of plants 451–468. https://doi.org/10.1111/j.1469-8137.2006.01806.x

Brini, F., Masmoudi, K., 2012a. Ion Transporters and Abiotic Stress Tolerance in Plants. ISRN Mol. Biol. https://doi.org/10.5402/2012/927436

Brini, F., Masmoudi, K., 2012b. Ion Transporters and Abiotic Stress Tolerance in Plants. ISRN Mol. Biol. 2012. https://doi.org/10.5402/2012/927436

Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C.L., Huang, X., 2015. Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol 16, 30. https://doi.org/10.1186/s13059-015-0596-2

Chou, M.-L., Liao, W.-Y., Wei, W.-C., Li, A., Chu, C.-Y., Wu, C.-L., Liu, C.-L., Fu, T.-H., Lin, L.-F., 2018. The Direct Involvement of Dark-Induced Tic55 Protein in Chlorophyll Catabolism and Its Indirect Role in the MYB108-NAC Signaling Pathway during Leaf Senescence in Arabidopsis thaliana. Int. J. Mol. Sci. 19, 1854. https://doi.org/10.3390/ijms19071854

Clough, S.J., Bent, A.F., 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743. https://doi.org/10.1046/j.1365-313X.1998.00343.x

Dai, X., Sinharoy, S., Udvardi, M., Zhao, P.X., 2013. PlantTFcat: An online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinformatics 14, 321. https://doi.org/10.1186/1471-2105-14-321

Dai, X., Zhuang, Z., Zhao, P.X., 2018. PsRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 46, W49–W54. https://doi.org/10.1093/nar/gky316

Danquah, A., de Zelicourt, A., Colcombet, J., Hirt, H., 2014. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol. Adv. https://doi.org/10.1016/j.biotechadv.2013.09.006

Debieu, M., Kanfany, G., Laplaze, L., 2017. Pearl Millet Genome: Lessons from a Tough Crop. Trends Plant Sci. 22, 911–913. https://doi.org/10.1016/j.tplants.2017.09.006

Desai, M.K., Mishra, R.N., Verma, D., Nair, S., Sopory, S.K., Reddy, M.K., 2006. Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet (Pennisetum glaucum). Plant Physiol. Biochem. 44, 483–93. https://doi.org/10.1016/j.plaphy.2006.08.008

Djanaguiraman, M., Perumal, R., Ciampitti, I.A., Gupta, S.K., Prasad, P.V. V, 2018. Quantifying pearl millet response to high temperature stress : thresholds , sensitive stages , genetic variability and relative sensitivity of pollen and pistil 993–1007. https://doi.org/10.1111/pce.12931

Dudhate, A., Shinde, H., Tsugama, D., Liu, S., Takano, T., 2018. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One 13. https://doi.org/10.1371/journal.pone.0195908

Dwivedi, S., Upadhyaya, H., Senthilvel, S., Hash, C., Fukunaga, K., Diao, X., Santra, D., Baltensperger, D., Prasad, M., 2011. Millets: Genetic and Genomic Resources, in: Plant Breeding Reviews. pp. 247–375. https://doi.org/10.1002/9781118100509.ch5

Fu, R., Zhang, M., Zhao, Y., He, X., Ding, C., Wang, S., Feng, Y., Song, X., Li, P., Wang, B., 2017. Identification of Salt Tolerance-related microRNAs and Their Targets in Maize (Zea mays L.) Using High-throughput Sequencing and Degradome Analysis. Front. Plant Sci. 8, 1–13. https://doi.org/10.3389/fpls.2017.00864

Gordon, A., Hannon, G.J., Gordon, 2014. FASTX-Toolkit. [Online] http://hannonlab. cshl. edu/fastx_ toolkit http://hannonlab. cshl. edu/fastx_ toolkit.

Gupta, B., Huang, B., 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genomics. https://doi.org/10.1155/2014/701596

Haas, B.J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P.D., Bowden, J., Couger, M.B., Eccles, D., Li, B., Lieber, M., Macmanes, M.D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C.N., Henschel, R., Leduc, R.D., Friedman, N., Regev, A., 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494. https://doi.org/10.1038/nprot.2013.084

Hamamoto, S., Horie, T., Hauser, F., Deinlein, U., Schroeder, J.I., Uozumi, N., 2015. HKT transporters mediate salt stress resistance in plants: From structure and function to the field. Curr. Opin. Biotechnol. 32, 113–120. https://doi.org/10.1016/j.copbio.2014.11.025

He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., Chen, S.Y., 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. https://doi.org/10.1111/j.1365- 313X.2005.02575.x

Hershko, A., Ciechanover, A., 1998. The ubiquitin system. Annu. Rev. Biochem. 425–89. https://doi.org/10.1146/annurev.biochem.67.1.425

Hong, Y., Zhang, H., Huang, L., Li, D., Song, F., 2016. Overexpression of a Stress- Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice. Front. Plant Sci. 7, 1–19. https://doi.org/10.3389/fpls.2016.00004 Hou, H., Jia, H., Yan, Q., Wang, X., 2018. Overexpression of a SBP-box gene (VpSBP16) from chinese wild vitis species in arabidopsis improves salinity and drought stress tolerance. Int. J. Mol. Sci. 19, 940. https://doi.org/10.3390/ijms19040940

Hrdlickova, R., Toloue, M., Tian, B., 2017. RNA-Seq methods for transcriptome analysis. Wiley Interdiscip. Rev. RNA. https://doi.org/10.1002/wrna.1364

Hu, H., Dai, M., Yao, J., Xiao, B., Li, X., Zhang, Q., Xiong, L., 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. 103, 12987–12992. https://doi.org/10.1073/pnas.0604882103

Huang, Q., Wang, Y., Li, B., Chang, J., Chen, M., Li, K., Yang, G., He, G., 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol. 15, 1–15. https://doi.org/10.1186/s12870-015- 0644-9

Jaiswal, S., Antala, T.J., Mandavia, M.K., Chopra, M., Jasrotia, R.S., Tomar, R.S., Kheni, J., Angadi, U.B., Iquebal, M.A., Golakia, B.A., Rai, A., Kumar, D., 2018. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci. Rep. 8, 3382. https://doi.org/10.1038/s41598-018- 21560-1

Jeong, J.S., Kim, Y.S., Baek, K.H., Jung, H., Ha, S.H., Do Choi, Y., Kim, M., Reuzeau, C., Kim, J.K., 2010. Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiol. 153, 185–197. https://doi.org/10.1104/pp.110.154773

Ji, H., Pardo, J.M., Batelli, G., Van Oosten, M.J., Bressan, R.A., Li, X., 2013. The salt overly sensitive (SOS) pathway: Established and emerging roles. Mol. Plant. https://doi.org/10.1093/mp/sst017

Jiang, Y., Yang, B., Harris, N.S., Deyholos, M.K., 2007. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J. Exp. Bot. 58, 3591–3607. https://doi.org/10.1093/jxb/erm207

Joshi, R., Wani, S.H., Singh, B., Bohra, A., Dar, Z.A., Lone, A.A., Pareek, A., Singla-Pareek, S.L., 2016. Transcription Factors and Plants Response to Drought Stress: Current Understanding and Future Directions. Front. Plant Sci. 7, 1–15. https://doi.org/10.3389/fpls.2016.01029

Jung, J.H., Park, C.M., 2011. Auxin modulation of salt stress signaling in Arabidopsis seed germination. Plant Signal. Behav. 6, 1198–1200. https://doi.org/10.4161/psb.6.8.15792

Kanai, M., Higuchi, K., Hagihara, T., Konishi, T., Ishii, T., Fujita, N., Nakamura, Y., Maeda, Y., Yoshiba, M., Tadano, T., 2007. Common reed produces starch granules at the shoot base in response to salt stress. New Phytol. 176, 572–80. https://doi.org/10.1111/j.1469- 8137.2007.02188.x

Kanehisa, M., 2002. The KEGG databases at GenomeNet. Nucleic Acids Res. 30, 42–46. https://doi.org/10.1093/nar/30.1.42

Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K., 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287. https://doi.org/10.1038/7036

Kavi Kishor, P.B., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N., 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr. Sci. https://doi.org/http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.471.372&rep=r ep1&type=pdf.

Kim, D.-Y., Jin, J.-Y., Alejandro, S., Martinoia, E., Lee, Y., 2010. Overexpression of AtABCG36 improves drought and salt stress resistance in Arabidopsis. Physiol. Plant. 139, 170–180. https://doi.org/10.1111/j.1399-3054.2010.01353.x

Knight, H., 1999. Calcium Signaling during Abiotic Stress in Plants. Int. Rev. Cytol. 195, 269–324. https://doi.org/10.1016/S0074-7696(08)62707-2

Krishnamurthy, L., Serraj, R., Rai, K.N., Hash, C.T., Dakheel, A.J., 2007. Identification of pearl millet [Pennisetum glaucum (L.) R. Br.] lines tolerant to soil salinity. Euphytica 158, 179–88. https://doi.org/10.1007/s10681-007-9441-3

Kulkarni, K.S., Zala, H.N., Bosamia, T.C., Shukla, Y.M., Kumar, S., Fougat, R.S., Patel, M.S., Narayanan, S., Joshi, C.G., 2016. De novo Transcriptome Sequencing to Dissect Candidate Genes Associated with Pearl Millet-Downy Mildew (Sclerospora graminicola Sacc.) Interaction. Front. Plant Sci. 7, 847. https://doi.org/10.3389/fpls.2016.00847

Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y., Shinozaki, K., 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. 107, 2361–2366. https://doi.org/10.1073/pnas.0912516107

Larue, C.T., Wen, J., Walker, J.C., 2009. Genetic interactions between the miRNA164-CUC2 regulatory module and BREVIPEDICELLUS in Arabidopsis developmental patterning. Plant Signal. Behav. 4, 666–668. https://doi.org/10.4161/psb.4.7.9037

Lee, E.K., Kwon, M., Ko, J.-H., Yi, H., Hwang, M.G., Chang, S., Cho, M.H., 2004. Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol. 134, 528–538. https://doi.org/10.1104/pp.103.027045

Lescot, M., 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. https://doi.org/10.1093/nar/30.1.325

Li, W., Godzik, A., 2006. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659. https://doi.org/10.1093/bioinformatics/btl158

Li, Y., Wan, L., Bi, S., Wan, X., Li, Z., Cao, J., Tong, Z., Xu, H., He, F., Li, X., 2017. Identification of drought-responsive micrornas from roots and leaves of alfalfa by high- throughput sequencing. Genes (Basel). 8. https://doi.org/10.3390/genes8040119

Liu, G., Li, X., Jin, S., Liu, X., Zhu, L., Nie, Y., Zhang, X., 2014. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9. https://doi.org/10.1371/journal.pone.0086895

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-$Δ$$Δ$CT method. Methods. https://doi.org/10.1006/meth.2001.1262

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25, 402–408. https://doi.org/10.1006/meth.2001.1262

Lu, X., Zhang, X., Duan, H., Lian, C., Liu, C., Yin, W., Xia, X., 2018. Three stress- responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiol. Plant. 162, 73–97. https://doi.org/10.1111/ppl.12613

Mariac, I.O.Æ.C., Vigouroux, J.-L.P.Æ.Y., 2008. Phylogeny and origin of pearl millet ( Pennisetum glaucum [ L .] R . Br ) as revealed by microsatellite loci. Theor Appl Genet 117, 489–497. https://doi.org/10.1007/s00122-008-0793-4

Miao, M., Zhu, Y., Qiao, M., Tang, X., Zhao, W., Xiao, F., Liu, Y., 2014. The tomato DWD motif-containing protein DDI1 interacts with the CUL4-DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses. Biochem. Biophys. Res. Commun. 450, 1439–1445. https://doi.org/10.1016/j.bbrc.2014.07.011

Mishra, R.N., Reddy, P.S., Nair, S., Markandeya, G., Reddy, A.R., Sopory, S.K., Reddy, M.K., 2007. Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol. Biol. 64, 713– 732. https://doi.org/10.1007/s11103-007-9193-4

Moin, M., Bakshi, A., Saha, A., Dutta, M., Madhav, S.M., Kirti, P.B., 2016. Rice Ribosomal Protein Large Subunit Genes and Their Spatio-temporal and Stress Regulation. Front. Plant Sci. 7, 1284. https://doi.org/10.3389/fpls.2016.01284

Munns, R., Tester, M., 2008. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

Muthusamy, M., Uma, S., Backiyarani, S., Saraswathi, M.S., Chandrasekar, A., 2016. Transcriptomic Changes of Drought-Tolerant and Sensitive Banana Cultivars Exposed to Drought Stress. Front. Plant Sci. 7, 1609. https://doi.org/10.3389/fpls.2016.01609

Nakashima, K., Tran, L.S.P., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., Yamaguchi-Shinozaki, K., 2007. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 51, 617–630. https://doi.org/10.1111/j.1365- 313X.2007.03168.x

Niazian, M., Sadatnoori, S.A., Galuszka, P., Mortazavian, S.M.M., 2017. Tissue culture- based Agrobacterium-mediated and in Planta transformation methods. Czech J. Genet. Plant Breed. 53, 133–143. https://doi.org/10.17221/177/2016-CJGPB

Nuruzzaman, M., Sharoni, A.M., Kikuchi, S., 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4, 1–16. https://doi.org/10.3389/fmicb.2013.00248

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M., 1999. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. https://doi.org/10.1093/nar/27.1.29

Olsen, A.N., Ernst, H.A., Leggio, L. Lo, Skriver, K., 2005. NAC transcription factors: Structurally distinct, functionally diverse. Trends Plant Sci. 10, 79–87. https://doi.org/10.1016/j.tplants.2004.12.010

Park, H.J., Kim, W.-Y., Yun, D.-J., 2016. A New Insight of Salt Stress Signaling in Plant. Mol. Cells 39, 447–459. https://doi.org/10.14348/molcells.2016.0083

Park, S., Fung, P., Nishimura, N., Jensen, D.R., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Rodriguez, P.L., Mccourt, P., Zhu, J., Schroeder, J.I., Volkman, B.F., Cutler, S.R., 2010. Abscisic acid inhibits PP2Cs via the PYR/PYL family of ABA- binding START proteins. Science (80-. ). 324, 1068– 1071. https://doi.org/10.1126/science.1173041.Abscisic

Pattanagul, W., Thitisaksakul, M., 2008. Effect of salinity stress on growth and carbohydrate metabolism in three Rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J. Exp. Biol. 46, 736–742.

Puhakainen, T., Hess, M.W., Mäkelä, P., Svensson, J., Heino, P., Palva, E.T., 2004. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54, 743–753. https://doi.org/10.1023/B:PLAN.0000040903.66496.a4

Puranik, S., Sahu, P.P., Srivastava, P.S., Prasad, M., 2012. NAC proteins: Regulation and role in stress tolerance. Trends Plant Sci. 17, 369–381. https://doi.org/10.1016/j.tplants.2012.02.004

Qudeimat, E., Faltusz, A.M.C., Wheeler, G., Lang, D., Brownlee, C., Reski, R., Frank, W., 2008. A PIIB-type Ca2+-ATPase is essential for stress adaptation in Physcomitrella patens. Proc. Natl. Acad. Sci. U. S. A. 105, 19555–19560. https://doi.org/10.1073/pnas.0800864105

Rahman, H., Jagadeeshselvam, N., Valarmathi, R., Sachin, B., Sasikala, R., Senthil, N., Sudhakar, D., Robin, S., Muthurajan, R., 2014. Transcriptome analysis of salinity responsiveness in contrasting genotypes of finger millet (Eleusine coracana L.) through RNA-sequencing. Plant Mol. Biol. 85, 485–503. https://doi.org/10.1007/s11103-014- 0199-4

Ramadevi, R., Rao, K. V., Reddy, V.D., 2014. Agrobacterium tumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.). Vitr. Cell. Dev. Biol. - Plant 50, 392–400. https://doi.org/10.1007/s11627- 013-9592-y

Rasband, W., 2015. ImageJ [Software]. U. S. Natl. Institutes Heal. Bethesda, Maryland, USA.

Reddy, P.S., Reddy, G.M., Pandey, P., Chandrasekhar, K., Reddy, M.K., 2012. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: Protection against abiotic stresses. Mol. Biol. Rep. 39, 7163– 7174. https://doi.org/10.1007/s11033-012-1548-5

Redillas, M.C.F.R., Jeong, J.S., Kim, Y.S., Jung, H., Bang, S.W., Choi, Y.D., Ha, S.H., Reuzeau, C., Kim, J.K., 2012. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant Biotechnol. J. 10, 792–805. https://doi.org/10.1111/j.1467- 7652.2012.00697.x

Rombauts, S., Déhais, P., Van Montagu, M., Rouzé, P., 1999. PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res. https://doi.org/10.1093/nar/27.1.295

Saha, A., Das, S., Moin, M., Dutta, M., Bakshi, A., Madhav, M.S., Kirti, P.B., 2017. Genome-Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit (RPL) Genes in Rice. Front. Plant Sci. 8, 1553. https://doi.org/10.3389/fpls.2017.01553

Saidi, M.N., Mergby, D., Brini, F., 2017. Identification and expression analysis of the NAC transcription factor family in durum wheat (Triticum turgidum L. ssp. durum). Plant Physiol. Biochem. 112, 117–128. https://doi.org/10.1016/j.plaphy.2016.12.028

Schindelin, J., Rueden, C.T., Hiner, M.C., Eliceiri, K.W., 2015. The ImageJ ecosystem: An open platform for biomedical image analysis. Mol. Reprod. Dev. https://doi.org/10.1002/mrd.22489

Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. https://doi.org/10.1038/nmeth.2089

Schulz, P., Herde, M., Romeis, T., 2013. Calcium-Dependent Protein Kinases: Hubs in Plant Stress Signaling and Development. Plant Physiol. 163, 523–530. https://doi.org/10.1104/pp.113.222539

Sharma, B., Joshi, D., Yadav, P.K., Gupta, A.K., Bhatt, T.K., 2016. Role of Ubiquitin- Mediated Degradation System in Plant Biology. Front. Plant Sci. 7, 806. https://doi.org/10.3389/fpls.2016.00806

Sharma, P.C., Sehgal, D., Singh, D., Singh, G., Yadav, R.S., 2011. A major terminal drought tolerance QTL of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Mol. Breed. 27, 207–222. https://doi.org/10.1007/s11032-010- 9423-3

Shinde, H., Dudhate, A., Tsugama, D., Gupta, S.K., Liu, S., Takano, T., 2018a. Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol. Biochem. In press, 1–8. https://doi.org/10.1016/j.plaphy.2018.11.004

Shinde, H., Tanaka, K., Dudhate, A., Tsugama, D., Mine, Y., Kamiya, T., K. Gupta, S., Liu, S., Takano, T., 2018b. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exp. Bot. 155, 619–627. https://doi.org/10.1016/j.envexpbot.2018.07.008

Shinde, H., Tanaka, K., Dudhate, A., Tsugama, D., Mine, Y., Kamiya, T., K. Gupta, S., Liu, S., Takano, T., 2018c. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ. Exp. Bot. 155, 619–627. https://doi.org/10.1016/j.envexpbot.2018.07.008

Shivhare, R., Lata, C., 2017. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.02069

Shivhare, R., Lata, C., 2016. Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci. Rep. 6, 23036. https://doi.org/10.1038/srep23036

Shrivastava, P., Kumar, R., 2015. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. https://doi.org/10.1016/j.sjbs.2014.12.001

Singh, J., Reddy, P.S., Reddy, C.S., Reddy, M.K., 2015. Molecular cloning and characterization of salt inducible dehydrin gene from the C4 plant Pennisetum glaucum. Plant Gene 4, 55–63. https://doi.org/10.1016/j.plgene.2015.08.002

Smart, R.E., Bingham, G.E., 1974. Rapid Estimates of Relative Water Content. Plant Physiol. 53, 258–260. https://doi.org/10.1104/pp.53.2.258

Song, A., Gao, T., Wu, D., Xin, J., Chen, S., Guan, Z., Wang, H., Jin, L., Chen, F., 2016. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. Plant Physiol. Biochem. 102, 10–16. https://doi.org/10.1016/j.plaphy.2016.02.009

Su, Y.T., Hock, L.K., 2016. Climate change and soil salinization: impact on agriculture, water and food security. Int. J. Agric. For. Plant. 2, 1–9.

Sunkar, R., Li, Y.F., Jagadeeswaran, G., 2012. Functions of microRNAs in plant stress responses. Trends Plant Sci. 17, 196–203. https://doi.org/10.1016/j.tplants.2012.01.010

Thalmann, M., Santelia, D., 2017. Starch as a determinant of plant fitness under abiotic stress. New Phytol. https://doi.org/10.1111/nph.14491

Tiécoura, K., Kouassi, A.B., Oulo, N., Bi, S.G., Dinant, M., Ledou, L., 2015. In vitro transformation of pearl millet ( P ennisetum glaucum ( L ). R . BR .): Selection of chlorsulfuron-resistant plants and long term expression of the gus gene under the control of the emu promoter 14, 3112–3123. https://doi.org/10.5897/AJB2015.14983

Tran, L.-S.P., Nishiyama, R., Yamaguchi-Shinozaki, K., Shinozaki, K., 2010. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1, 32–39. https://doi.org/10.4161/gmcr.1.1.10569

Tran, L.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., Yamaguchi-shinozaki, K., 2004. Isolation and Functional Analysis of Arabidopsis Stress-Inducible NAC Transcription Factors That Bind to a Drought-Responsive cis -Element in the early responsive to dehydration stress 1 Promoter. Plant Cell 16, 2481–2498. https://doi.org/10.1105/tpc.104.022699.Shinozaki

Tuteja, N., 2007a. Mechanisms of High Salinity Tolerance in Plants. Methods Enzymol. https://doi.org/10.1016/S0076-6879(07)28024-3

Tuteja, N., 2007b. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2, 135–138. https://doi.org/10.4161/psb.2.3.4156

Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., Yamaguchi-Shinozaki, K., 2010. Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant Cell Physiol. 51, 1821–1839. https://doi.org/10.1093/pcp/pcq156

Vadez, V., Hash, T., Bidinger, F.R., Kholova, J., 2012. II.1.5 Phenotyping pearl millet for adaptation to drought. Front. Physiol. 3, 386. https://doi.org/10.3389/fphys.2012.00386

Varshney, R.K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., Zhang, H., Zhao, Y., Wang, X., Rathore, A., Srivastava, R.K., Chitikineni, A., Fan, G., Bajaj, P., Punnuri, S., Gupta, S.K., Wang, H., Jiang, Y., Couderc, M., Katta, M.A.V.S.K., Paudel, D.R., Mungra, K.D., Chen, W., Harris-Shultz, K.R., Garg, V., Desai, N., Doddamani, D., Kane, N.A., Conner, J.A., Ghatak, A., Chaturvedi, P., Subramaniam, S., Yadav, O.P., Berthouly-Salazar, C., Hamidou, F., Wang, J., Liang, X., Clotault, J., Upadhyaya, H.D., Cubry, P., Rhoné, B., Gueye, M.C., Sunkar, R., Dupuy, C., Sparvoli, F., Cheng, S., Mahala, R.S., Singh, B., Yadav, R.S., Lyons, E., Datta, S.K., Tom Hash, C., Devos, K.M., Buckler, E., Bennetzen, J.L., Paterson, A.H., Ozias-Akins, P., Grando, S., Wang, J., Mohapatra, T., Weckwerth, W., Reif, J.C., Liu, X., Vigouroux, Y., Xu, X., 2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35, 969. https://doi.org/10.1038/nbt.3943

Verma, D., Singla-Pareek, S.L., Rajagopal, D., Reddy, M.K., Sopory, S.K., 2007. Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J. Biosci. 32, 621–628. https://doi.org/10.1007/s12038-007-0061-9

Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R.K., Kumar, V., Verma, R., Upadhyay, R.G., Pandey, M., Sharma, S., 2017. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects. Front. Plant Sci. 8, 161. https://doi.org/10.3389/fpls.2017.00161

Voinnet, O., 2009. Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell 136, 669–687. https://doi.org/10.1016/j.cell.2009.01.046

Voorrips, R.E., 2002. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J. Hered. 93, 77–78. https://doi.org/10.1093/jhered/93.1.77

Wang, H., Wang, H., Shao, H., Tang, X., 2016. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology. Front. Plant Sci. 7, 67. https://doi.org/10.3389/fpls.2016.00067

Wang, L., Li, Z., Lu, M., Wang, Y., 2017. ThNAC13, a NAC Transcription Factor from Tamarix hispida, Confers Salt and Osmotic Stress Tolerance to Transgenic Tamarix and Arabidopsis. Front. Plant Sci. 8, 1–13. https://doi.org/10.3389/fpls.2017.00635

Wu, D., Sun, Y., Wang, H., Shi, H., Su, M., Shan, H., Li, T., Li, Q., 2018. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana. Gene 662, 10–20. https://doi.org/10.1016/j.gene.2018.04.012

Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., Wang, Y., Zhang, M., 2012. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7, 1–10. https://doi.org/10.1371/journal.pone.0030039

Xiao, Y., Xia, W., Yang, Y., Mason, A.S., Lei, X., Ma, Z., 2013. Characterization and Evolution of Conserved MicroRNA through Duplication Events in Date Palm (Phoenix dactylifera). PLoS One 8. https://doi.org/10.1371/journal.pone.0071435

Xu, M., Hu, T., Zhao, J., Park, M.Y., Earley, K.W., Wu, G., Yang, L., Poethig, R.S., 2016. Developmental Functions of miR156-Regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) Genes in Arabidopsis thaliana. PLoS Genet. 12, 1–29. https://doi.org/10.1371/journal.pgen.1006263

Yadav, A., Khan, Y., Prasad, M., 2016. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling. Planta 243, 749– 766. https://doi.org/10.1007/s00425-015-2437-7

Yadav, O.P., Rai, K.N., Gupta, S.K., 2012. Pearl Millet: Genetic Improvement in Tolerance to Abiotic Stresses. Improv. Crop Product. Sustain. Agric. 261–288. https://doi.org/10.1002/9783527665334.ch12

Yang, C., Li, D., Mao, D., Liu, X., Ji, C., Li, X., Zhao, X., Cheng, Z., Chen, C., Zhu, L., 2013. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativaL.). Plant, Cell Environ. 36, 2207–2218. https://doi.org/10.1111/pce.12130

Yang, Z., Lu, R., Dai, Z., Yan, A., Tang, Q., Cheng, C., Xu, Y., Yang, W., Su, J., 2017. Salt- stress response mechanisms using de novo transcriptome sequencing of salt-tolerant and sensitive corchorus spp. Genotypes. Genes (Basel). 8, 226. https://doi.org/10.3390/genes8090226

Yemm, E.W., Willis, A.J., 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508. https://doi.org/10.1042/bj0570508

Yu, Y., Ni, Z., Chen, Q., Qu, Y., 2017. The wheat salinity-induced R2R3-MYB transcription factor TaSIM confers salt stress tolerance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 491, 642–648. https://doi.org/10.1016/j.bbrc.2017.07.150

Zeng, L.R., Vega-Sánchez, M.E., Zhu, T., Wang, G.L., 2006. Ubiquitination-mediated protein degradation and modification: An emerging theme in plant-microbe interactions, in: Cell Research. p. 16(5), 413. https://doi.org/10.1038/sj.cr.7310053

Zhang, A., Liu, D., Hua, C., Yan, A., Liu, B., Wu, M., Liu, Y., Huang, L., Ali, I., Gan, Y., 2016. The arabidopsis gene zinc finger protein 3(ZFP3) is involved in salt stress and osmotic stress response. PLoS One 11, 1–16. https://doi.org/10.1371/journal.pone.0168367

Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., Xiao, F., Ye, Z., 2011. Over- expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnol. Lett. 33, 403–409. https://doi.org/10.1007/s10529-010-0436-0

Zhao, X., Yang, X., Pei, S., He, G., Wang, X., Tang, Q., Jia, C., Lu, Y., Hu, R., Zhou, G., 2016. The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis. Gene 586, 158–169. https://doi.org/10.1016/j.gene.2016.04.028

Zhu, J.-K., 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る