リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Assessment of drought and salinity stress responses of pearl millet (Pennisetum glaucum L.)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Assessment of drought and salinity stress responses of pearl millet (Pennisetum glaucum L.)

AMBIKA, KONDIRAM DUDHATE 東京大学 DOI:10.15083/0002002050

2021.10.04

概要

The Submitted study aimed to analyze and identify the genes and pathways that confers tolerance for drought and salinity stress in pearl millet (Pennisetum galucum. L). The analysis was performed using omics technologies specifically Transcriptomics, metabolomics and genome wide comprehensive analysis. The Thesis is mainly divided into 5 chapters, each chapter representing one approach.

Chapter 1 represents the general introduction into three parts that explains about the impact of thesis orderly. Part one introduces the pearl millet crop descriptively and has information about the crop, benefits of crop, cultivation and coverage area globally and its tolerance to drought and salinity. Part two explains the constrains of drought and its effect on present world and importance of study regarding drought. Part three explains the connection of pearl millet with drought and future applications of the presented study, with the aim and objectives of the study listed at the end.

Chapter 2 explains the transcriptomics analysis uncovers the differentially expressed genes and pathways that were responsive to drought stress (5-7 days of drought). For this study two lines (ICMB 843 and ICMB 863) of pearl millet were used. Findings of this chapter shows the high expressivity of photosynthesis, MAPK signaling pathways and plant hormone signaling pathways s in both lines of pearl millet under drought stress.

Chapter 3 is about comparing the transcriptomic analysis with the metabolomics data that was created using the untargeted LC-MS analysis. The finding of the chapter presents the idea that the pathways and metabolites found by the module of peaks and pathways in Metaboanalyst ver 4.0 were highly like the transcriptomic analysis. Combinedly shows the effect on carbohydrate, amino acid and secondary metabolism with the exceptions of some pathways specific to root and leaves tissues. With the help of the metabolites the representing enzymes and the genes were found in transcriptomic analysis were found and candidate genes were retrieved. Due to avoidable circumstances this chapter is not allowed to be online at the present situation and some more time has been asked as its determined to be published online near future.

Chapter 4 concentrates on the comprehensive analysis of NAC transcription factor that are spread throughout genome of pearl millet. In our analysis 151 NAC TF were reported using HMMER algorithm. Drought and Salinity responsive NAC TF were shown with the help of qRT-PCR analysis, with the motif identification, phylogenetic analysis by grouping them in classes. Due to avoidable circumstances this chapter is not allowed to be online at the present situation and some more time has been asked as its determined to be published online near future. This chapter has been submitted online and its under review process

Chapter 5 is the last chapter concluding the thesis by discussing the previous significant of the research in pearl millet with the drought stress and its future application. The

この論文で使われている画像

参考文献

1. Budak, Hi, Pedraza. F, Cregan P.B, Baenzinger P.S and DI. Development and Utilization of SSRs to Estimate the Degree of Genetic Relationshipsin a Collection of Pearl Millet Germplasm. Crop Sci. 2002;43(6):2284–90.

2. Ghatak A, Chaturvedi P, Nagler M, Roustan V, Lyon D, Bachmann G, et al. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). J Proteomics. 2016;143:122–35.

3. Varshney RK, Shi C, Thudi M, Mariac C, Wallace J, Qi P, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol [Internet]. Nature Publishing Group; 2017;35(10):969–76. Available from: http://dx.doi.org/10.1038/nbt.3943

4. Vadez V, Hash T, Bidinger FR, Kholova J. II.1.5 Phenotyping pearl millet for adaptation to drought. Front Physiol. 2012;3 OCT(October):1–12.

5. Khairwal I, Rai K, Diwakar B, Sharma Y, Rajpurohit B, Nirwan B, et al. Pearl millet: Crop management and seed production Manua. Int Resaerch Inst semi Arid Trop. 2007;723.

6. Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, et al. Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul. 2002;

7. Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, et al Drought stress in plants: A review on morphological characteristics and pigments composition. International Journal of Agriculture and Biology. 2009.

8. Hsiao TC. Plant response to water stress. Annu Rev Plant Physiol. 1973;

9. Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: Effects, mechanisms and management. Sustain Agric. 2009;29:153–88.

10. Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R. Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus - Biol. 2008;331(1):42–7.

11. Li C, Jiang D, Wollenweber B, Li Y, Dai T, Cao W. Waterlogging pretreatment during vegetative growth improves tolerance to waterlogging after anthesis in wheat. Plant Sci [Internet]. Elsevier Ireland Ltd; 2011;180(5):672–8. Available from: http://dx.doi.org/10.1016/j.plantsci.2011.01.009

12. Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci [Internet]. 2011;108(50):20260–4. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1116437108

13. Zhang J, Zhang S, Cheng M, Jiang H, Zhang X, Peng C, et al. Effect of drought on agronomic traits of rice and wheat: A meta-analysis. Int J Environ Res Public Health. 2018;15(5).

14. Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature [Internet]. Nature Publishing Group; 2016;529(7584):84–7. Available from: http://dx.doi.org/10.1038/nature16467

15. Farooq M, Hussain M, Siddique KHM. Drought Stress in Wheat during Flowering and Grain-filling Periods. CRC Crit Rev Plant Sci. 2014;33(4):331–49.

16. Matiu M, Ankerst DP, Menzel A. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014. PLoS One. 2017;12(5):e0178339.

17. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci [Internet]. 2017;8(June):1–16. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2017.01147/full

18. Jongdee B, Fukai S, Cooper M. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. F Crop Res. 2002;

19. Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants. Trends in Plant Science. 2007.

20. Saki Nejad T, Bakhshande A, Nasab SB, Payande K. Effect of drought stress on corn root growth. Rep Opin. 2010;

21. Basu S, Ramegowda V, Kumar A, Pereira A. Plant adaptation to drought stress. F1000Research. 2016;

22. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta. 2003.

23. Anjum SA, Ashraf U, Tanveer M, Khan I, Hussain S, Shahzad B, et al. Drought Induced Changes in Growth, Osmolyte Accumulation and Antioxidant Metabolism of Three Maize Hybrids. Front Plant Sci. 2017;

24. Tricker PJ, Elhabti A, Schmidt J, Fleury D. The physiological and genetic basis of combined drought and heat tolerance in wheat. J Exp Bot. 2018;69(13):3195–210.

25. Varshney RK, Tuberosa R, Tardieu F. Progress in understanding drought tolerance: From alleles to cropping systems. J Exp Bot. 2018;69(13):3175–9.

26. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP. Climate Change and Water [Internet]. Climate change and water. 2008. 210 p. Available from: http://www.citeulike.org/group/14742/article/8861411%5Cnhttp://www.ipcc.ch/publicatio ns_and_data/publications_and_data_technical_papers.shtml#.UREVW6X7Uy4

27. Cruz de Carvalho MH. Drought stress and reactive oxygen species. Plant Signal Behav [Internet]. 2008;3(3):156–65. Available from: http://www.tandfonline.com/doi/abs/10.4161/psb.3.3.5536

28. By P. World ’ s largest Science , Technology & Medicine Open Access book publisher Molecular and Morphophysiological Analysis Molecular and Morphophysiological Analysis of Drought Stress in Plants of Drought Stress in Plants.

29. Bartels D, Sunkar R. Drought and salt tolerance in plants. CRC Crit Rev Plant Sci. 2005;24(1):23–58.

30. Tuteja N. Abscisic Acid and Abiotic Stress Signaling. Plant Signal Behav [Internet]. 2007;2(3):135–8. Available from: http://www.tandfonline.com/doi/abs/10.4161/psb.2.3.4156

31. Liu H, Sultan MARF, Liu XL, Zhang J, Yu F, Zhao HX. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought- tolerant wild wheat (Triticum boeoticum). PLoS One. 2015;10(4):1–29.

32. Pinheiro C, Chaves MM. Photosynthesis and drought: Can we make metabolic connections from available data? J Exp Bot. 2011;62(3):869–82.

33. Min H, Chen C, Wei S, Shang X, Sun M, Xia R, et al. Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. Front Plant Sci [Internet]. 2016;7(July). Available from: http://journal.frontiersin.org/Article/10.3389/fpls.2016.01080/abstract

34. Baldoni E, Bagnaresi P, Locatelli F, Mattana M, Genga A. Comparative Leaf and Root Transcriptomic Analysis of two Rice Japonica Cultivars Reveals Major Differences in the Root Early Response to Osmotic Stress. Rice [Internet]. Rice; 2016;9(1):25. Available from: http://thericejournal.springeropen.com/articles/10.1186/s12284-016-0098-1

35. Song K, Kim HC, Shin S, Kim K-H, Moon J-C, Kim JY, et al. Transcriptome Analysis of Flowering Time Genes under Drought Stress in Maize Leaves. Front Plant Sci [Internet]. 2017;8(March):1–12. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2017.00267/full

36. Rajaram V, Nepolean T, Senthilvel S, Varshney RK, Vadez V, Srivastava RK, et al. Pearl millet [ Pennisetum glaucum ( L .) R . Br .] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs Pearl millet [ Pennisetum glaucum ( L .) R . Br .] consensus linkage map constructed using four RIL mappin. BMC Genomics [Internet]. 2013;14(1):1. Available from: BMC Genomics

37. Shivhare R, Lata C. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet. Front Plant Sci [Internet]. 2017;7(January):1–17. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2016.02069/full

38. Kumar S, Hash CT, Thirunavukkarasu N, Singh G, Rajaram V, Rathore A, et al. Mapping Quantitative Trait Loci Controlling High Iron and Zinc Content in Self and Open Pollinated Grains of Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci [Internet]. 2016;7(November):1–16. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2016.01636/full

39. Mishra RN, Reddy PS, Nair S, Markandeya G, Reddy AR, Sopory SK, et al. Isolation and characterization of expressed sequence tags (ESTs) from subtracted cDNA libraries of Pennisetum glaucum seedlings. Plant Mol Biol. 2007;64(6):713–32.

40. Choudhary M, Jayanand, Padaria JC. Transcriptional profiling in pearl millet (Pennisetum glaucum L.R. Br.) for identification of differentially expressed drought responsive genes. Physiol Mol Biol Plants. 2015;21(2):187–96.

41. Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK. Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep. 2010;37(2):1125–35.

42. Islam T, Manna M, Reddy MK. Glutathione peroxidase of Pennisetum glaucum (PgGPx) is a functional Cd2+ dependent peroxiredoxin that enhances tolerance against salinity and drought stress. PLoS One. 2015;10(11):1–18.

43. Jongeneel V, Estreicher A, Baxevanis AD, Ouellette BFF, Wolfsberg TG, Landsman D, et al. EXPRESSED SEQUENCE TAGS (ESTs). Bioinforma A Pract Guid to Anal Genes Proteins. 2001;10(1):57–63.

44. Smart RE, Bingham GE. Smart, R. E., & Bingham, G. E. (1974). Rapid Estimates of Relative Water Content. Plant Physiology, 53(2), 258–260. https://doi.org/10.1104/pp.53.2.258Rapid Estimates of Relative Water Content. Plant Physiol. 1974;53(2):258–60.

45. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(SUPPL.2):182–5.

46. Shivhare R, Lata C. Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations. Sci Rep [Internet]. Nature Publishing Group; 2016;6(October 2015):1–12. Available from: http://dx.doi.org/10.1038/srep23036

47. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods. 2001;25(4):402–8.

48. Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, et al. Reference genome sequence of the model plant Setaria. Nat Biotechnol [Internet]. Nature Publishing Group; 2012;30(6):555–61. Available from: http://dx.doi.org/10.1038/nbt.2196

49. Woo NS, Badger MR, Pogson BJ. A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods [Internet]. 2008;4(1):27. Available from: http://plantmethods.biomedcentral.com/articles/10.1186/1746-4811-4-27

50. Lu CM, Zhang JH. Effects of water stress on photosystem II photochemistry and its thermostability in wheat plants. J Exp Bot [Internet]. 1999;50(336):1199–206. Available from: http://jxb.oxfordjournals.org/content/50/336/1199.full.pdf

51. Wydrzynski T, Hillier W, Conlan B. Engineering model proteins for Photosystem II function. Photosynth Res. 2007;94(2–3):225–33.

52. Chen Y-E, Liu W-J, Su Y-Q, Cui J-M, Zhang Z-W, Yuan M, et al. Different response of photosystem II to short and long term drought stress in Arabidopsis thaliana. Physiol Plant [Internet]. 2016;(April):225–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26918860

53. Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB. Homologs of Plant PsbP and PsbQ Proteins Are Necessary for Regulation of Photosystem II Activity in the Cyanobacterium Synechocystis 6803. Plant Cell Online [Internet]. 2004;16(8):2164–75. Available from: http://www.plantcell.org/cgi/doi/10.1105/tpc.104.023515

54. Suorsa M, Sirpiö S, Allahverdiyeva Y, Paakkarinen V, Mamedov F, Styring S, et al. PsbR, a missing link in the assembly of the oxygen-evolving complex of plant photosystem II. J Biol Chem. 2006;281(1):145–50.

55. Tullberg A, Alexciev K, Pfannschmidt T, Allen JF. Photosynthetic Electron Flow Regulates Transcription of the psaB Gene in Pea ( Pisum sativum L.) Chloroplasts Through the Redox State of the Plastoquinone Pool. Plant Cell Physiol [Internet]. 2000;41(9):1045–54. Available from: http://academic.oup.com/pcp/article/41/9/1045/2329569/Photosynthetic-Electron-Flow- Regulates

56. Scheller HV, Jensen PE, Haldrup A, Lunde C, Knoetzel J. Role of subunits in eukaryotic Photosystem I. Biochim Biophys Acta - Bioenerg. 2001;1507(1–3):41–60.

57. Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. Plant hormone interactions: Innovative targets for crop breeding and management. J Exp Bot. 2012;63(9):3499–509.

58. Jung H, Lee DK, Choi Y Do, Kim JK. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci [Internet]. Elsevier Ireland Ltd; 2015;236:304–12. Available from: http://dx.doi.org/10.1016/j.plantsci.2015.04.018

59. Du H, Wu N, Fu J, Wang S, Li X, Xiao J, et al. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J Exp Bot. 2012;63(18):6467–80.

60. Wei T, Deng K, Zhang Q, Gao Y, Liu Y, Yang M, et al. Modulating AtDREB1C Expression Improves Drought Tolerance in Salvia miltiorrhiza. Front Plant Sci [Internet]. 2017;8(January):1–17. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2017.00052/full

61. Apelbaum A, Yang SF. Biosynthesis of stress ethylene induced by water deficit. Plant Physiol [Internet]. 1981;68(3):594–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16661963%5Cnhttp://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=PMC425945

62. Atwell BJ. Emission Rate in Plants. 2015;(March):2–4.

63. Saglam A, Terzi R, Demiralay M. Effect of polyethylene glycol induced drought stress on photosynthesis in two chickpea genotypes with different drought tolerance. Acta Biol Hung [Internet]. 2014;65(2):178–88. Available from: http://www.akademiai.com/doi/abs/10.1556/ABiol.65.2014.2.6

64. Sun X, Zhao T, Gan S, Ren X, Fang L, Karungo SK, et al. Ethylene positively regulates cold tolerance in grapevine by modulating the expression of ETHYLENE RESPONSE FACTOR 057. Sci Rep [Internet]. Nature Publishing Group; 2016;6(January):1–14. Available from: http://dx.doi.org/10.1038/srep24066

65. Riemann M, Dhakarey R, Hazman M, Miro B, Kohli A, Nick P. Exploring Jasmonates in the Hormonal Network of Drought and Salinity Responses. Front Plant Sci [Internet]. 2015;6(December):1–16. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2015.01077

66. Jonak C, Kiegerl S, Ligterink Wilc, BARKERt PJ, HUSKISSONt NS, by Winslow Briggs CR. Stress signaling in plants: A mitogen-activated protein kinase pathway is activated by cold and drought. Plant Biol. 1996;93(October):11274–9.

67. Liu Y, Zhou M, Gao Z, Ren W, Yang F, He H, et al. RNA-seq analysis reveals MAPKKK family members related to drought tolerance in maize. PLoS One. 2015;10(11):1–26.

68. Passot S. Exploring pearl millet root system and its outcome for drought tolerance Sixtine Passot To cite this version : HAL Id : tel-01424258 Spécialité : Biologie , Interactions , Diversité Présentée par Sixtine PASSOT. 2018;

69. Yadav OP, Singh D V., Vadez V, Gupta SK, Rajpurohit BS, Shekhawat PS. Improving pearl millet for drought tolerance- Retrospect and prospects. Indian J Genet Plant Breed. 2017;77(4):464–74.

70. Rai, K.N., Gowda, C.L.L., Reddy, B.V.S., and Sehgal S. Adaptation and Potential Uses of Sorghum and Pearl Millet in Alternative and Health Foods. Food Sci Food Saf. 2008;7:340–52.

71. White JW, McMaster GS, Edmeades GO. Genomics and crop response to global change: What have we learned? In: Field Crops Research. 2004.

72. Denby K, Gehring C. Engineering drought and salinity tolerance in plants: Lessons from genome-wide expression profiling in Arabidopsis. Trends in Biotechnology. 2005.

73. Bartels D, Sunkar R. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences. 2005.

74. Ghassemi F, Jakeman AJ, Nix HA, others. Salinisation of land and water resources: human causes, extent, management and case studies. CAB international; 1995.

75. Hillel D. Salinity management for sustainable irrigation: integrating science, environment, and economics. 2000.

76. Hu Y, Schmidhalter U. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci. 2005;168(4):541–9.

77. Heidari A, Toorchi M, Bandehagh A, Shakiba M. Effect of NaCl Stress on Growth , Water Relations , Organic and Inorganic Osmolytes Accumulation in Sunflower ( Helianthus annuus L .) Lines. Univers J Environ Res Technol. 2011;

78. Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology. 2006.

79. Munns R, Tester M. Mechanisms of Salinity Tolerance. Annu Rev Plant Biol. 2008;

80. Janská A, Maršík P, Zelenková S, Ovesná J. Cold stress and acclimation - what is important for metabolic adjustment? Plant Biology. 2010.

81. Shulaev V, Cortes D, Miller G, Mittler R. Metabolomics for plant stress response. Physiologia Plantarum. 2008.

82. Nazar R, Iqbal N, Syeed S, Khan NA. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars. J Plant Physiol. 2011;

83. Zhao X, Wang W, Zhang F, Deng J, Li Z, Fu B. Comparative metabolite profiling of two rice genotypes with contrasting salt stress tolerance at the seedling stage. PLoS One. 2014;

84. Arbona V, Manzi M, de Ollas C, Gómez-Cadenas A. Metabolomics as a tool to investigate abiotic stress tolerance in plants. International Journal of Molecular Sciences. 2013.

85. Arbona V, Iglesias DJ, Talón M, Gómez-Cadenas A. Plant phenotype demarcation using nontargeted LC-MS and GC-MS metabolite profiling. J Agric Food Chem. 2009;

86. Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comparative and Functional Genomics. 2001.

87. Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD. Impact of heat stress during seed development on soybean seed metabolome. Metabolomics. 2016;

88. Clarke JD, Alexander DC, Ward DP, Ryals JA, Mitchell MW, Wulff JE, et al. Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Sci Rep. 2013;

89. Li L, Hur M, Lee JY, Zhou W, Song Z, Ransom N, et al. A systems biology approach toward understanding seed composition in soybean. BMC Genomics. 2015;

90. Rabara RC, Tripathi P, Rushton PJ. Comparative Metabolome Profile between Tobacco and Soybean Grown under Water-Stressed Conditions. Biomed Res Int. 2017;

91. Silvente S, Sobolev AP, Lara M. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. PLoS One. 2012;

92. Huang B, Gao H. Growth and carbohydrate metabolism of creeping bentgrass cultivars in response to increasing temperatures. Crop Sci. 2000;

93. Zhang JY, Cruz De Carvalho MH, Torres-Jerez I, Kang Y, Allen SN, Huhman D V., et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant, Cell Environ. 2014;

94. Dudhate A, Shinde H, Tsugama D, Liu S, Takano T. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [pennisetum glaucum (l.) r. Br]. PLoS One. 2018;13(4):1–15.

95. Shinde H, Tanaka K, Dudhate A, Tsugama D, Mine Y, Kamiya T, et al. Comparative de novo transcriptomic profiling of the salinity stress responsiveness in contrasting pearl millet lines. Environ Exp Bot. 2018;

96. Holman JD, Tabb DL. NIH Public Access. 2015;918–20.

97. Tautenhahn R, Patti GJ, Rinehart D, Siuzdak G. XCMS online: A web-based platform to process untargeted metabolomic data. Anal Chem. 2012;84(11):5035–9.

98. Tautenhahn R, Patti GJ, Kalisiak E, Miyamoto T, Schmidt M, Lo FY, et al. MetaXCMS: Second-order analysis of untargeted metabolomics data. Anal Chem. 2011;

99. Worley B, Powers R. Multivariate Analysis in Metabolomics Bradley. Curr Metabolomics. 2015;1(1):92–107.

100. Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep [Internet]. 2018;8(1):3382. Available from: https://doi.org/10.1038/s41598-018-21560-1

101. Granot D, Kelly G, Stein O, David-Schwartz R. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot. 2014;65(3):809–19.

102. Pan L, Zhang X, Wang J, Ma X, Zhou M, Huang L, et al. Transcriptional Profiles of Drought-Related Genes in Modulating Metabolic Processes and Antioxidant Defenses in Lolium multiflorum. Front Plant Sci [Internet]. 2016;7(April):1–15. Available from: http://journal.frontiersin.org/Article/10.3389/fpls.2016.00519/abstract

103. Fernie AR, Carrari F, Sweetlove LJ. Respiratory metabolism: Glycolysis, the TCA cycle and mitochondrial electron transport. Current Opinion in Plant Biology. 2004.

104. Kruger NJ, Von Schaewen A. The oxidative pentose phosphate pathway: Structure and organisation. Current Opinion in Plant Biology. 2003.

105. Hampp R, Outlaw WH, Tarczynski MC. Profile of Basic Carbon Pathways in Guard Cells and Other Leaf Cells of Vicia faba L. PLANT Physiol. 1982;

106. Outlaw, Jr. WH. Integration of Cellular and Physiological Functions of Guard Cells. CRC Crit Rev Plant Sci. 2003;

107. Peng J, Liu J, Zhang L, Luo J, Dong H, Ma Y, et al. Effects of soil salinity on sucrose metabolism in cotton leaves. PLoS One. 2016;11(5):1–19.

108. Almeida P, Feron R, de Boer GJ, de Boer AH. Role of Na+, K+, Cl-, proline and sucrose concentrations in determining salinity tolerance and their correlation with the expression of multiple genes in tomato. AoB Plants. 2014;6:1–13.

109. Pattanagul W, Thitisaksakul M. Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J Exp Biol [Internet]. 2008;46(10):736–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19024173

110. O.C. Elavumoottil JPM and M. M. Elavumoottil2003_Article_ChangesInSugarsSucroseSynthase.pdf. 2003. p. 7–12.

111. Rathert G. Effects of high salinity stress on mineral and carbohydrate metabolism of two cotton varieties. Plant Soil. 1983;

112. Voet D, Voet JG, Pratt CW. Fundamentals of biochemistry life at the molecular level. In: Fundamentals of biochemistry life at the molecular level. 2016.

113. Baena-González E, Sheen J. Convergent energy and stress signaling. Trends in Plant Science. 2008.

114. Salter M, Knowles RG, Pogson CI. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J. 1986;

115. Rocha M, Licausi F, Araujo WL, Nunes-Nesi A, Sodek L, Fernie AR, et al. Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicus. PLANT Physiol. 2010;

116. Sweetlove LJ, Beard KFM, Nunes-Nesi A, Fernie AR, Ratcliffe RG. Not just a circle: Flux modes in the plant TCA cycle. Trends in Plant Science. 2010.

117. Ashraf M, Foolad MRR. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot. 2007;

118. Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science. 2005.

119. Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: A historical perspective. Plant Science. 2001.

120. Edreva a, Velikova V, Tsonev T, Dagnon S, Gesheva E, Gurel A, et al. Stress-Protective Role of Secondary Metabolites : Diversity of Functions and Mechanisms. Gen Appl Plant Physiol. 2008;

121. Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004;

122. Chakhchar A, Lamaoui M, Wahbi S, Ferradous A, El Mousadik A, Ibnsouda-Koraichi S, et al. Leaf water status, osmoregulation and secondary metabolism as a model for depicting drought tolerance in Argania spinosa. Acta Physiol Plant. 2015;37(4).

123. Chen H, Xiong L. Pyridoxine is required for post-embryonic root development and tolerance to osmotic and oxidative stresses. Plant J. 2005;44(3):396–408.

124. Jaiswal S, Antala TJ, Mandavia MK, Chopra M, Jasrotia RS, Tomar RS, et al. Transcriptomic signature of drought response in pearl millet (Pennisetum glaucum (L.) and development of web-genomic resources. Sci Rep. 2018;8(1):1–16.

125. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci [Internet]. King Saud University; 2015;22(2):123–31. Available from: http://dx.doi.org/10.1016/j.sjbs.2014.12.001

126. Daryanto S, Wang L, Jacinthe PA. Global synthesis of drought effects on maize and wheat production. PLoS One. 2016;11(5):1–16.

127. Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, et al. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc Natl Acad Sci [Internet]. 2014;111(9):3274–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1222465110

128. Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6(5):410–7.

129. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, et al. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017;45(D1):D1040–5.

130. Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. 2013;4(SEP):1–16.

131. Aida M. Genes Involved in Organ Separation in Arabidopsis: An Analysis of the cup- shaped cotyledon Mutant. Plant Cell Online [Internet]. 1997;9(6):841–57. Available from: http://www.plantcell.org/cgi/doi/10.1105/tpc.9.6.841

132. Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY. Molecular analysis of the NAC gene family in rice. Mol Gen Genet. 2000;262(6):1047– 51.

133. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, et al. Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003;10(6):239–47.

134. Puranik S, Sahu PP, Mandal SN, B. VS, Parida SK, Prasad M. Comprehensive Genome- Wide Survey, Genomic Constitution and Expression Profiling of the NAC Transcription Factor Family in Foxtail Millet (Setaria italica L.). PLoS One. 2013;8(5).

135. Shiriga K, Sharma R, Kumar K, Yadav SK, Hossain F, Thirunavukkarasu N. Genome- wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene [Internet]. Elsevier B.V.; 2014;2(1):407–17. Available from: http://dx.doi.org/10.1016/j.mgene.2014.05.001

136. Rice P, Longden L, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000;

137. Carver T, Bleasby A. The design of Jemboss: A graphical user interface to EMBOSS. Bioinformatics. 2003;

138. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: The protein families database. Nucleic Acids Research. 2014.

139. Sonnhammer ELL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam: Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998;

140. Coggill P, Finn RD, Bateman A. Identifying protein domains with the Pfam database. Current Protocols in Bioinformatics. 2008.

141. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, et al. HMMER web server: 2015 Update. Nucleic Acids Res. 2015;43(W1):W30–8.

142. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: Architecture and applications. BMC Bioinformatics. 2009;

143. Voorrips RE. MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. J Hered. 2002;

144. Gu Z, Cavalcanti A, Chen FC, Bouman P, Li WH. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol Biol Evol. 2002;

145. Yang S, Zhang X, Yue JX, Tian D, Chen JQ. Recent duplications dominate NBS- encoding gene expansion in two woody species. Mol Genet Genomics. 2008;

146. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016;33(7):1870–4.

147. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME Suite: Tools for motif discovery and searching. Nucleic Acids Res. 2009;37(SUPPL. 2):202–8.

148. Bailey TL, Elkan C. Fitting a Mixture Model by Expectation Maximization to Discover Motifs in Bipolymers. Proc Second Int Conf Intell Syst Mol Biol [Internet]. 1994;28–36. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.7056&rep=rep1&type=pdf%5Cnhttp://www.cs.utoronto.ca/~brudno/csc2417_10/10.1.1.121.7056.pdf

149. Conesa A, Götz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008.

150. Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, et al. Genome-wide analysis of NAC transcription factor family in rice. Gene [Internet]. Elsevier B.V.; 2010;465(1–2):30–44. Available from: http://dx.doi.org/10.1016/j.gene.2010.06.008

151. Singh A, Sharma V, Pal A. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). Dna … [Internet]. 2013;(May):403–23. Available from: http://dnaresearch.oxfordjournals.org/content/20/4/403.short

152. You J, Zhang L, Song B, Qi X, Chan Z. Systematic analysis and identification of stress- responsive genes of the NAC gene family in Brachypodium distachyon. PLoS One. 2015;10(3):1–20.

153. Shang H, Li W, Zou C, Yuan Y. Analyses of the NAC transcription factor gene family in gossypium raimondii Ulbr.: Chromosomal location, structure, phylogeny, and expression patterns. J Integr Plant Biol. 2013;55(7):663–76.

154. Cenci A, Guignon V, Roux N, Rouard M. Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol. 2014;

155. Hu W, Wei Y, Xia Z, Yan Y, Hou X, Zou M, et al. Genome-wide identification and expression analysis of the NAC transcription factor family in cassava. PLoS One. 2015;10(8):1–25.

156. Xu Z-Y, Kim SY, Hyeon DY, Kim DH, Dong T, Park Y, et al. The Arabidopsis NAC Transcription Factor ANAC096 Cooperates with bZIP-Type Transcription Factors in Dehydration and Osmotic Stress Responses. Plant Cell. 2013;

157. Zhu G, Chen G, Zhu J, Zhu Y, Lu X, Li X, et al. Molecular characterization and expression profiling of NAC transcription factors in brachypodium distachyon L. PLoS One. 2015;

158. Wu J, Wang L, Wang S. Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean. BMC Plant Biol. 2016;

159. Thirumalaikumar VP, Devkar V, Mehterov N, Ali S, Ozgur R, Turkan I, et al. NAC transcription factor JUNGBRUNNEN1 enhances drought tolerance in tomato. Plant Biotechnol J. 2018;

160. Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, et al. A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 2010;

161. Nakashima K, Tran LSP, Van Nguyen D, Fujita M, Maruyama K, Todaka D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J. 2007;

162. Rachmat A, Nugroho S, Sukma D, Aswidinnoor H, Sudarsono. Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance. Emirates J Food Agric. 2014;

163. Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano H-Y, et al. OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst. 2005;

164. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res [Internet]. 2003;10(May):239–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15029955

165. Rahman H, Ramanathan V, Nallathambi J, Duraialagaraja S, Muthurajan R. Over- expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol. 2016;

166. Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, et al. Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One. 2014;

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る