リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「厳密な熱力学と表面科学に基づく有望な吸着剤-吸着質ペアに関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

厳密な熱力学と表面科学に基づく有望な吸着剤-吸着質ペアに関する研究

タハミドウ, ハサン, ルポム HASAN, RUPAM, TAHMID 九州大学

2022.03.23

概要

With the conscious awareness regarding energy scarcity and ecofriendly energy conversion systems adsorption-based heat transformation systems have gained much popularity in recent times due their utilization of low-grade waste heat as driving energy. Gas adsorption onto solid porous materials finds its application in various technologies including but not limited to heat pumps, desiccators, desalination, atmospheric water harvesting, gas storage, gas sensing and separation and so on. One of the major drawbacks of the adsorption-based systems are them being bulky in size with a high installation cost. These drawbacks are mainly introduced due to lack of an optimum adsorbent material. Regardless of the application, the efficiency of any adsorption-based system largely depends on its isotherm and kinetics. To get the desired isotherm and sorption kinetics efforts have been made to modify the conventional adsorbents like silica gels, activated carbons, zeolites, etc. in various ways to get desired properties in the adsorbent material. Apart from that, emphasis is given on synthesizing different tailored porous materials like metal organic frameworks, aerogels, ionic liquids, etc. yet no clear break through is found in this particular research field. One of the reasons behi9nd this is the existing gap between the material science and the applied thermal engineering. This research gap predominantly depends on the existence of the state-of-the-art characterization techniques to relate the morphological characteristics of the adsorbent material with the adsorption phenomenon. Generally, adsorbent’s BET surface area, pore size distribution, thermal/cycle stability, thermal conductivity etc. are correlated with the experimentally obtained adsorption isotherm and kinetics data to provide implicit indications for the scientists to understand the applicability of these adsorbents for their targeted systems. However, this traditional characterization techniques do not incorporate any information about the surface chemistry of the adsorbent material. Additionally, these characterization techniques fail to address the reaction mechanism in molecular level between the adsorbent’s surface and adsorbate molecule. Adsorption being a surface phenomenon is greatly influenced by the chemical properties of the adsorbent’s surface. Therefore, keeping this research gap in mind, this thesis emphasizes on the total surface characterization (both morphological and chemical) of the various adsorbent materials with a view to correlating its surface energy properties with their respective adsorption isotherms and adsorption thermodynamics which will eventually reduce the gap between the material science and thermal engineering to an acceptable margin. This research stresses several key factors, firstly, it shows how adsorbent/adsorbate interaction can influence the adsorption thermodynamics. Secondly, it discusses on how the thermodynamic properties can be utilized in designing an optimum adsorbent material. After that, it shows how surface energy can influence the adsorption isotherms prior to how individual components of the surface energy effect the adsorption isotherms. Some of the notable outcomes of this thesis includes the thermodynamic characterization of some potential pairs for adsorption heat pump applications. The study revealed that AC/ethanol pairs are the most suited pairs for the chiller applications. Later, the Henry region adsorption isotherm for various potential AC/ethanol pairs were obtained experimentally. Using the Henry constant and near zero adsorption enthalpy the adsorbed phase entropy was modeled. Utilizing the adsorbed phase entropy and adsorbents’ pore volume, a guideline was given for synthesizing optimum carbonaceous adsorbent for ethanol adsorption. Then focus was given on metal organic frameworks (MOFs) targeting water adsorption. Transitional metal doping was done on parent MOF to enhance its water sorption properties. The green synthesized samples showed higher values of SCE than the commercial one. Last but not the least, we selected three different MOFs- aluminum fumarate, MOF 801 and MIL 100 (Fe) and characterize their surfaces. We have showed the relation between the surface properties of adsorbents and the experimentally obtained adsorption isotherm.

この論文で使われている画像

参考文献

1. Abdallah, L. & El-Shennawy, T. Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. J. Eng. (United Kingdom) 2013, (2013).

2. United Nations. Energy Statistics Yearbook. (2006).

3. (DOE), U. D. of E. The Smart Grid: an estimation of the energy and CO2 benefits. (2010).

4. Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strateg. Rev. 24, 38–50 (2019).

5. United Nations Department of Economic and Social Affairs (UN DESA). Sustainable Development Goal 7: Ensure Access to Affordable, Reliable, Sustainable and Modern Energy for All. https://sustainabledevelopment.un.org/sdg7 (2017).

6. Wang, D. C., Li, Y. H., Li, D., Xia, Y. Z. & Zhang, J. P. A review on adsorption refrigeration technology and adsorption deterioration in physical adsorption systems. Renew. Sustain. Energy Rev. 14, 344–353 (2010).

7. Shmroukh, A. N., Ali, A. H. H. & Ookawara, S. Adsorption working pairs for adsorption cooling chillers: A review based on adsorption capacity and environmental impact. Renewable and Sustainable Energy Reviews vol. 50 445–456 (2015).

8. Saha, B. B., Uddin, K., Pal, A. & Thu, K. Emerging sorption pairs for heat pump applications: an overview. JMST Adv. 1, 161–180 (2019).

9. Boman, D. B., Hoysall, D. C., Pahinkar, D. G., Ponkala, M. J. & Garimella, S. Screening of working pairs for adsorption heat pumps based on thermodynamic and transport characteristics. Appl. Therm. Eng. 123, 422–434 (2017).

10. Shabir, F. et al. Recent updates on the adsorption capacities of adsorbent-adsorbate pairs for heat transformation applications. Renew. Sustain. Energy Rev. 119, 109630 (2020).

11. Henninger, S. K., Schmidt, F. P. & Henning, H. M. Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010).

12. Karmakar, A., Prabakaran, V., Zhao, D. & Chua, K. J. A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat- transformation applications. Appl. Energy 269, 115070 (2020).

13. Pal, A. et al. Study on biomass derived activated carbons for adsorptive heat pump application. Int. J. Heat Mass Transf. 110, 7–19 (2017).

14. Kasaeian, A. et al. Applications of eco-friendly refrigerants and nanorefrigerants: A review. Renewable and Sustainable Energy Reviews vol. 96 91–99 (2018).

15. de Lange, M. F., Verouden, K. J. F. M., Vlugt, T. J. H., Gascon, J. & Kapteijn, F. Adsorption-Driven Heat Pumps: The Potential of Metal–Organic Frameworks. Chem. Rev. 115, 12205–12250 (2015).

16. Liu, X., Wang, X. & Kapteijn, F. Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chem. Rev. 120, 8303–8377 (2020).

17. Azahar, F. H. M. et al. Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles. Appl. Therm. Eng. 143, 688–700 (2018).

18. Wei Benjamin Teo, H., Chakraborty, A. & Fan, W. Improved adsorption characteristics data for AQSOA types zeolites and water systems under static and dynamic conditions. Microporous Mesoporous Mater. 242, 109–117 (2017).

19. Chua, H. T., Ng, K. C., Chakraborty, A. & Oo, N. M. Thermodynamic property fields of an adsorbate-adsorbent system. Langmuir 19, 2254–2259 (2003).

20. Li, B. et al. Nanospace within metal–organic frameworks for gas storage and separation. Mater. Today Nano 2, 21–49 (2018).

21. Wang, X.-F., Song, X.-Z., Sun, K.-M., Cheng, L. & Ma, W. MOFs-derived porous nanomaterials for gas sensing. Polyhedron 152, 155–163 (2018).

22. Zhao, Z. et al. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1). Chem. Eng. J. 259, 79–89 (2015).

23. Martínez-Ahumada, E., Díaz-Ramírez, M. L., Velásquez-Hernández, M. de J., Jancik, V. & Ibarra, I. A. Capture of toxic gases in MOFs: SO2, H2S, NH3and NOx. Chem. Sci. 12, 6772–6799 (2021).

24. Shen, K., Chen, X., Chen, J. & Li, Y. Development of MOF-Derived Carbon-Based Nanomaterials for Efficient Catalysis. ACS Catalysis vol. 6 5887–5903 (2016).

25. Tuli, F. J. et al. Removal of methylene blue from water by low-cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environ. Nanotechnology, Monit. Manag. 14, 100354 (2020).

26. Maher, H., Rupam, T. H., Rocky, K. A., Bassiouny, R. & Saha, B. B. Silica gel-MIL 100(Fe) composite adsorbents for ultra-low heat-driven atmospheric water harvester. Energy 238, 121741 (2022).

27. Henninger, S. K., Habib, H. A. & Janiak, C. MOFs as Adsorbents for Low Temperature Heating and Cooling Applications. J. Am. Chem. Soc. 131, 2776–2777 (2009).

28. AL-Dadah, R., Mahmoud, S., Elsayed, E., Youssef, P. & Al-Mousawi, F. Metal-organic framework materials for adsorption heat pumps. Energy 190, 116356 (2020).

29. Rupam, T. H., Islam, M. A., Pal, A. & Saha, B. B. Adsorption thermodynamics and performance indicators of selective adsorbent/refrigerant pairs. Appl. Therm. Eng. 175, 115361 (2020).

30. Rupam, T. H., Islam, M. A., Pal, A., Chakraborty, A. & Saha, B. B. Thermodynamic property surfaces for various adsorbent/adsorbate pairs for cooling applications. Int. J. Heat Mass Transf. 144, 118579 (2019).

31. Rupam, T. H., Palash, M. L., Islam, M. A. & Saha, B. B. Transitional metal-doped aluminum fumarates for ultra-low heat driven adsorption cooling systems. Energy 238, 122079 (2022).

32. Jribi, S., Chakraborty, A., El-Sharkawy, I. I., Saha, B. B. & Koyama, S. Thermodynamic Analysis of Activated Carbon-CO2 based Adsorption Cooling Cycles. World Acad. Sci. Eng. Technol. 2, 63–66 (2008).

33. Uddin, K. et al. Adsorption characteristics of ethanol onto functional activated carbons with controlled oxygen content. Appl. Therm. Eng. 72, 211–218 (2014).

34. Saha, B. B., El-Sharkawy, I. I., Thorpe, R. & Critoph, R. E. Accurate adsorption isotherms of R134a onto activated carbons for cooling and freezing applications. Int. J. Refrig. 35, 499–505 (2012).

35. García, L. et al. Adsorption separation of oxidative coupling of methane effluent gases. Mini-plant scale experiments and modeling. J. Nat. Gas Sci. Eng. 61, 106–118 (2019).

36. Pahinkar, D. G. & Garimella, S. A novel temperature swing adsorption process for natural gas purification: Part I, model development. Sep. Purif. Technol. 203, 124–142 (2018).

37. Chan, K. C., Chao, C. Y. H. & Wu, C. L. Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents. Int. J. Heat Mass Transf. 89, 308–319 (2015).

38. Sultan, M. et al. Adsorption of Difluoromethane (HFC-32) onto phenol resin based adsorbent: Theory and experiments. Int. J. Heat Mass Transf. 127, 348–356 (2018).

39. Maurin, G., Serre, C., Cooper, A. & Férey, G. The new age of MOFs and of their porous- related solids. Chem. Soc. Rev. 46, 3104–3107 (2017).

40. Zhang, Y., Yang, X. & Zhou, H.-C. Synthesis of MOFs for heterogeneous catalysis via linker design. Polyhedron 154, 189–201 (2018).

41. Cornette, V. et al. Insensitivity in the pore size distribution of ultramicroporous carbon materials by CO2 adsorption. Carbon N. Y. 168, 508–514 (2020).

42. Barr, T. L. An XPS study of Si as it occurs in adsorbents, catalysts, and thin films. Appl. Surf. Sci. 15, 1–35 (1983).

43. Burg, P. et al. The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods. Carbon N. Y. 40, 1521–1531 (2002).

44. Kushwaha, S., Sreedhar, B. & Padmaja, P. XPS, EXAFS, and FTIR as tools to probe the unexpected adsorption-coupled reduction of U(VI) to U(V) and U(IV) on borassus flabellifer -based adsorbents. Langmuir 28, 16038–16048 (2012).

45. Singha, B., Naiya, T. K., Bhattacharya, A. kumar & Das, S. K. Cr(VI) Ions Removal from Aqueous Solutions Using Natural Adsorbents – FTIR Studies. J. Environ. Prot. (Irvine,. Calif). 02, 729–735 (2011).

46. Cheng, S. et al. Adsorption behavior of methylene blue onto waste-derived adsorbent and exhaust gases recycling. RSC Adv. 7, 27331–27341 (2017).

47. Ruan, C., Strømme, M. & Lindh, J. A green and simple method for preparation of an efficient palladium adsorbent based on cysteine functionalized 2,3-dialdehyde cellulose. Cellulose 23, 2627–2638 (2016).

48. Rocky, K. A., Pal, A., Rupam, T. H., Palash, M. L. & Saha, B. B. Recent advances of composite adsorbents for heat transformation applications. Therm. Sci. Eng. Prog. 23, 100900 (2021).

49. Palash, M. L., Jahan, I., Rupam, T. H., Harish, S. & Saha, B. B. Novel technique for improving the water adsorption isotherms of metal-organic frameworks for performance enhancement of adsorption driven chillers. Inorganica Chim. Acta 501, 119313 (2020).

50. Jahan, I. et al. Experimental Study on the Influence of Metal Doping on Thermophysical Properties of Porous Aluminum Fumarate. Heat Transf. Eng. 1–10 (2020) doi:10.1080/01457632.2020.1777005.

51. Palash, M. L. et al. Design principles for synthesizing high grade activated carbons for adsorption heat pumps. Chem. Eng. J. Adv. 6, 100086 (2021)

52. Palash, M. L., Mitra, S., Harish, S., Thu, K. & Saha, B. B. An approach for quantitative analysis of pore size distribution of silica gel using atomic force microscopy. Int. J. Refrig. 105, 72–79 (2019).

53. Xue, M., Chitrakar, R., Sakane, K. & Ooi, K. Screening of adsorbents for removal of H2S at room temperature. Green Chem. 5, 529–534 (2003).

54. Ma, H., Hsiao, B. S. & Chu, B. Ultrafine Cellulose Nanofibers as Efficient Adsorbents for Removal of UO22+ in Water. ACS Macro Lett. 1, 213–216 (2012).

55. Jeremias, F., Frohlich, D., Janiak, C. & Henninger, S. K. Water and methanol adsorption on MOFs for cycling heat transformation processes. New J. Chem. 38, 1846–1852 (2014).

56. Stock, N. & Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 112, 933–969 (2012).

57. Choi, J. I., Chun, H. & Lah, M. S. Zirconium-Formate Macrocycles and Supercage: Molecular Packing versus MOF-like Network for Water Vapor Sorption. J. Am. Chem. Soc. 140, 10915–10920 (2018).

58. Henninger, S. K., Jeremias, F., Kummer, H. & Janiak, C. MOFs for use in adsorption heat pump processes. Eur. J. Inorg. Chem. 2625–2634 (2012) doi:10.1002/ejic.201101056.

59. Rocky, K. A., Pal, A., Moniruzzaman, M. & Saha, B. B. Adsorption characteristics and thermodynamic property fields of polymerized ionic liquid and polyvinyl alcohol based composite/CO2 pairs. J. Mol. Liq. 294, 111555 (2019).

60. Chakraborty, A., Saha, B. B., Ng, K. C., Koyama, S. & Srinivasan, K. Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. thermodynamic property surfaces. Langmuir (2009) doi:10.1021/la803289p.

61. Singh, V. K. & Kumar, E. A. Experimental investigation and thermodynamic analysis of CO2adsorption on activated carbons for cooling system. J. CO2 Util. 17, 290–304 (2017).

62. Uddin, K. et al. Specific heat capacities of carbon-based adsorbents for adsorption heat pump application. Appl. Therm. Eng. 129, 117–126 (2018).

63. Rocky, K. A. et al. Experimental investigation of the specific heat capacity of parent materials and composite adsorbents for adsorption heat pumps. Appl. Therm. Eng. 164, 114431 (2020).

64. Aristov, Y. I. Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. (2009) doi:10.1016/j.ijrefrig.2009.01.022.

65. Chakraborty, A., Saha, B. B., Koyama, S. & Ng, K. C. Specific heat capacity of a single component adsorbent-adsorbate system. Appl. Phys. Lett. 90, (2007).

66. Islam, M. A., Thu, K. & Saha, B. B. Specific heat capacity of mangrove and waste palm trunk in raw, carbonized and activated form. Specif. heat Capacit. mangrove waste palm trunk raw, carbonized Act. form (2018).

67. Tomeczek, J. & Palugniok, H. Specific heat capacity and enthalpy of coal pyrolysis at elevated temperatures. Fuel 75, 1089–1093 (1996).

68. Jahan, I. et al. Experimental Study on the Influence of Metal Doping on Thermophysical Properties of Porous Aluminum Fumarate. Heat Transf. Eng. 42, 1132–1141 (2021).

69. Islam, M. A., Pal, A. & Saha, B. B. Experimental study on thermophysical and porous properties of silica gels. Int. J. Refrig. (2019) doi:10.1016/J.IJREFRIG.2019.10.027.

70. Teo, H. W. B., Chakraborty, A., Kitagawa, Y. & Kayal, S. Experimental study of isotherms and kinetics for adsorption of water on Aluminium Fumarate. Int. J. Heat Mass Transf. 114, 621–627 (2017).

71. Goldsworthy, M. J. Measurements of water vapour sorption isotherms for RD silica gel, AQSOA-Z01, AQSOA-Z02, AQSOA-Z05 and CECA zeolite 3A. Microporous Mesoporous Mater. 196, 59–67 (2014).

72. Ghazy, M., Harby, K., Askalany, A. A. & Saha, B. B. Adsorption isotherms and kinetics of activated carbon/Difluoroethane adsorption pair: Theory and experiments. Int. J. Refrig. 70, 196–205 (2016).

73. Kondor, A., Quellet, C. & Dallos, A. Surface characterization of standard cotton fibres and determination of adsorption isotherms of fragrances by IGC. Surf. Interface Anal. 47, 1040–1050 (2015).

74. El-Sharkawy, I. I., Jing Ming, H., Ng, K. C., Yap, C. & Saha, B. B. Adsorption Equilibrium and Kinetics of Gasoline Vapors onto Carbon-Based Adsorbents. J. Chem. Eng. Data 53, 41–47 (2008).

75. El-Sharkawy, I. I., Saha, B. B., Koyama, S. & Ng, K. C. A study on the kinetics of ethanol-activated carbon fiber: Theory and experiments. Int. J. Heat Mass Transf. 49, 3104–3110 (2006).

76. Glaznev, I. S., Ovoshchnikov, D. S. & Aristov, Y. I. Kinetics of water adsorption/desorption under isobaric stages of adsorption heat transformers: The effect of isobar shape. Int. J. Heat Mass Transf. 52, 1774–1777 (2009).

77. Teo, H. W. B., Chakraborty, A. & Kayal, S. Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption. Appl. Therm. Eng. 120, 453–462 (2017).

78. Kayal, S., Baichuan, S. & Saha, B. B. Adsorption characteristics of AQSOA zeolites and water for adsorption chillers. Int. J. Heat Mass Transf. 92, 1120–1127 (2016).

79. Kim, H. et al. Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks. Sci. Rep. 6, 19097 (2016).

80. Cloete, S., Giuffrida, A., Romano, M. C. & Zaabout, A. The effect of sorbent regeneration enthalpy on the performance of the novel Swing Adsorption Reactor Cluster (SARC) for post-combustion CO2 capture. Chem. Eng. J. 377, 119810 (2019).

81. Cloete, S., Giuffrida, A., Romano, M. C. & Zaabout, A. The effect of sorbent regeneration enthalpy on the performance of the novel Swing Adsorption Reactor Cluster (SARC) for post-combustion CO2 capture. Chem. Eng. J. 377, 119810 (2019).

82. Otero Areán, C., Nachtigallová, D., Nachtigall, P., Garrone, E. & Rodríguez Delgado, M. Thermodynamics of reversible gas adsorption on alkali-metal exchanged zeolites— the interplay of infrared spectroscopy and theoretical calculations. Phys. Chem. Chem. Phys. 9, 1421–1437 (2007).

83. Myers, A. L. Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules. Colloids Surfaces A Physicochem. Eng. Asp. 241, 9–14 (2004).

84. Chakraborty, A., Saha, B. B., Ng, K. C., El-Sharkawy, I. I. & Koyama, S. Thermodynamic property surfaces for adsorption of R507A, R134a, and n-butane on pitch-based carbonaceous porous materials. Heat Transf. Eng. (2010) doi:10.1080/01457631003604152.

85. Cho, K. H. et al. Rational design of a robust aluminum metal-organic framework for multi-purpose water-sorption-driven heat allocations. Nat. Commun. 11, 5112 (2020).

86. Mohammadi-Jam, S. & Waters, K. E. Inverse gas chromatography applications: A review. Adv. Colloid Interface Sci. 212, 21–44 (2014).

87. Yao, Z. et al. Finite Dilution Inverse Gas Chromatography as a Versatile Tool To Determine the Surface Properties of Biofillers for Plastic Composite Applications. Anal. Chem. 87, 6724–6729 (2015).

88. Lim, H. J. et al. Experimental consideration of the Hansen solubility parameters of as- produced multi-walled carbon nanotubes by inverse gas chromatography. Phys. Chem. Chem. Phys. 16, 17466–17472 (2014).

89. Münch, A. S. & Mertens, F. O. R. L. The Lewis acidic and basic character of the internal HKUST-1 surface determined by inverse gas chromatography. CrystEngComm 17, 438– 447 (2015).

90. Rojewska, M. et al. Surface properties and surface free energy of cellulosic etc mucoadhesive polymers. Carbohydr. Polym. 171, 152–162 (2017).

91. Pal, A. et al. On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. Journal of Industrial and Engineering Chemistry vol. 69 432–443 (2018).

92. Palash, M. L., Pal, A., Rupam, T. H., Park, B.-D. & Saha, B. B. Surface energy characterization of different particulate silica gels at infinite dilution. Colloids Surfaces A Physicochem. Eng. Asp. 603, 125209 (2020).

93. Krishnamurthy, A., Adebayo, B., Gelles, T., Rownaghi, A. & Rezaei, F. Abatement of gaseous volatile organic compounds: A process perspective. Catal. Today 350, 100–119 (2020).

94. Zhang, X. et al. Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. Bioresour. Technol. 245, 606–614 (2017).

95. Commission, U. N. E. Gothenburg Protocol. (1999).

96. Zhang, X., Gao, B., Creamer, A. E., Cao, C. & Li, Y. Adsorption of VOCs onto engineered carbon materials: A review. Journal of Hazardous Materials vol. 338 102– 123 (2017).

97. Jo, W. K. & Yang, C. H. Granular-activated carbon adsorption followed by annular-type photocatalytic system for control of indoor aromatic compounds. Sep. Purif. Technol. 66, 438–442 (2009).

98. Luengas, A. et al. A review of indoor air treatment technologies. Reviews in Environmental Science and Biotechnology vol. 14 499–522 (2015).

99. Hoeben, W. F. L. M., Beckers, F. J. C. M., Pemen, A. J. M., Van Heesch, E. J. M. & Kling, W. L. Oxidative degradation of toluene and limonene in air by pulsed corona technology. J. Phys. D. Appl. Phys. 45, 055202 (2012).

100. Lu, Y., Liu, J., Lu, B., Jiang, A. & Wan, C. Study on the removal of indoor VOCs using biotechnology. J. Hazard. Mater. 182, 204–209 (2010).

101. Yokosuka, Y. et al. Photocatalytic degradation of trichloroethylene using N-doped TiO 2 prepared by a simple sol-gel process. Res. Chem. Intermed. 35, 43–53 (2009).

102. Hubbard, H. F., Coleman, B. K., Sarwar, G. & Corsi, R. L. Effects of an ozone- generating air purifier on indoor secondary particles in three residential dwellings. Indoor Air 15, 432–444 (2005).

103. Hauer, A. Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems. Adsorption 13, 399–405 (2007).

104. Finck, C. et al. Experimental Results of a 3 kWh Thermochemical Heat Storage Module for Space Heating Application. Energy Procedia 48, 320–326 (2014).

105. Jänchen, J., Ackermann, D., Stach, H. & Brösicke, W. Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 76, 339–344 (2004).

106. Mohammed, R. H., Mesalhy, O., Elsayed, M. L., Su, M. & Chow, L. C. Revisiting the adsorption equilibrium equations of silica-gel / water for adsorption cooling applications. Int. J. Refrig. 86, 40–47 (2018).

107. Li, A. et al. Formulation of water equilibrium uptakes on silica gel and ferroaluminophosphate zeolite for adsorption cooling and desalination applications. Evergreen 1, 37–45 (2014).

108. Eun, T., Song, H., Hun Han, J., Lee, K. & Kim, J. Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps:: Part I. Characterization of the composite blocks: Amélioration du transfert de chaleur de blocs en matériaux composite graphite-silice expansé/d. Int. J. Refrig. 23, 64–73 (2000).

109. Chakraborty, A., Saha, B. B., Koyama, S., Ng, K. C. & Srinivasan, K. Adsorption Thermodynamics of Silica Gel−Water Systems. J. Chem. Eng. Data 54, 448–452 (2009).

110. Younes, M. M. et al. Synthesis and characterization of silica gel composite with polymer binders for adsorption cooling applications. Int. J. Refrig. (2018) doi:10.1016/j.ijrefrig.2018.09.003.

111. Wang, D. C. et al. Study of a novel silica gel-water adsorption chiller. Part II. Experimental study. Int. J. Refrig. 28, 1084–1091 (2005).

112. Ng, K. C. et al. Experimental investigation of the silica gel–water adsorption isotherm characteristics. Appl. Therm. Eng. 21, 1631–1642 (2001)

113. Zheng, X., Chen, K. & Lin, Z. Synthesis and Characterization of Alginate-Silica Gel Composites for Adsorption Dehumidification. Ind. Eng. Chem. Res. 59, 5760–5767 (2020).

114. Saha, B. B. et al. Isotherms and thermodynamics for the adsorption of n-butane on pitch based activated carbon. Int. J. Heat Mass Transf. 51, 1582–1589 (2008).

115. El-Sharkawy, I. I. et al. Adsorption of ethanol onto phenol resin based adsorbents for developing next generation cooling systems. Int. J. Heat Mass Transf. (2015) doi:10.1016/j.ijheatmasstransfer.2014.10.012.

116. Pal, A., Uddin, K., Thu, K. & Saha, B. B. Activated carbon and graphene nanoplatelets based novel composite for performance enhancement of adsorption cooling cycle. Energy Convers. Manag. 180, 134–148 (2019).

117. Pal, A., Uddin, K., Rocky, K. A., Thu, K. & Saha, B. B. CO2 adsorption onto activated carbon–graphene composite for cooling applications. Int. J. Refrig. 106, 558–569 (2019).

118. Pal, A. et al. Ionic liquid as a new binder for activated carbon based consolidated composite adsorbents. Chem. Eng. J. 326, 980–986 (2017).

119. Yu, L. et al. MXene-Bonded Activated Carbon as a Flexible Electrode for High- Performance Supercapacitors. ACS Energy Lett. 3, 1597–1603 (2018)

120. Itoi, H., Hayashi, S., Matsufusa, H. & Ohzawa, Y. Electrochemical synthesis of polyaniline in the micropores of activated carbon for high-performance electrochemical capacitors. Chem. Commun. 53, 3201–3204 (2017).

121. Kim, C. et al. Turning Harmful Deposition of Metal Impurities into Activation of Nitrogen-Doped Carbon Catalyst toward Durable Electrochemical CO2 Reduction. ACS Energy Lett. 4, 2343–2350 (2019).

122. Li, L. et al. Unraveling Oxygen Evolution Reaction on Carbon-Based Electrocatalysts: Effect of Oxygen Doping on Adsorption of Oxygenated Intermediates. ACS Energy Lett. 2, 294–300 (2017).

123. Tiruneh, S. N. et al. Millerite Core–Nitrogen-Doped Carbon Hollow Shell Structure for Electrochemical Energy Storage. Small 14, 1802933 (2018).

124. Yin, Z. et al. The Application of Carbon Nanotube/Graphene-Based Nanomaterials in Wastewater Treatment. Small 16, 1902301 (2020).

125. Yu, M., Liu, R., Liu, J., Li, S. & Ma, Y. Polyhedral-Like NiMn-Layered Double Hydroxide/Porous Carbon as Electrode for Enhanced Electrochemical Performance Supercapacitors. Small 13, 1702616 (2017).

126. ILER & KR. The Chemistry of Silica. Solubility, Polym. Colloid Surf. Prop. Biochem. Silica (1979).

127. Saha, B. B., Chakraborty, A., Koyama, S. & Aristov, Y. I. A new generation cooling device employing CaCl2-in-silica gel–water system. Int. J. Heat Mass Transf. 52, 516– 524 (2009).

128. KISTLER, S. S. Coherent Expanded Aerogels and Jellies. Nature 127, 741 (1931).

129. Ferdi Schüth, Kenneth S. W. Sing, J. W. Handbook of Porous Solids. (Wiley, 2008).

130. Meynen, V., Cool, P. & Vansant, E. F. Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 125, 170–223 (2009).

131. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

132. Barton, T. J. et al. Tailored Porous Materials. Chem. Mater. 11, 2633–2656 (1999).

133. Critoph, R. E. & Zhong, Y. Review of trends in solid sorption refrigeration and heat pumping technology. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 219, 285– 300 (2005).

134. Pons, M. et al. Thermodynamic based comparison of sorption systems for cooling and heat pumping: Comparaison des performances thermodynamique des systèmes de pompes à chaleur à sorption dans des applications de refroidissement et de chauffage. Int. J. Refrig. 22, 5–17 (1999).

135. Zheng, Y., Li, X. & Dutta, P. K. Exploitation of Unique Properties of Zeolites in the Development of Gas Sensors. Sensors 12, 5170–5194 (2012).

136. Martens, J. A. & Jacobs, P. A. Crystalline Microporous Phosphates: a Family of Versatile Catalysts and Adsorbents. in Advanced Zeolite Science and Applications (eds. Jansen, J. C., Stöcker, M., Karge, H. G. & Weitkamp, J.) vol. 85 653–685 (Elsevier, 1994).

137. Vasil’eva, E. A., Zhdanov, S. P., Zinov’ev, S. Y., Smirnova, E. I. & Feoktistova, N. N. Synthesis and adsorption properties of zeolite-like aluminophosphates. Bull. Acad. Sci. USSR, Div. Chem. Sci. 38, 2213–2217 (1989).

138. Ng, E.-P. & Mintova, S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous Mesoporous Mater. 114, 1–26 (2008).

139. Kornatowski, J. Adsorption isotherms of water as a tool for characterization of metal substituted aluminophosphate molecular sieves. Comptes Rendus Chim. 8, 561–568 (2005).

140. Izmailova, S. G., Vasiljeva, E. A., Karetina, I. V, Feoktistova, N. N. & Khvoshchev, S. S. Adsorption of Methanol, Ammonia and Water on the Zeolite-Like Aluminophosphates AlPO4-5, AlPO4-17, and AlPO4-18. J. Colloid Interface Sci. 179, 374–379 (1996).

141. Newalkar, B. L., Jasra, R. V, Kamath, V. & Bhat, S. G. T. Sorption of water in aluminophosphate molecular sieve AlPO4-5. Microporous Mesoporous Mater. 20, 129– 137 (1998).

142. Ding, M., Cai, X. & Jiang, H. L. Improving MOF stability: Approaches and applications. Chem. Sci. 10, 10209–10230 (2019).

143. Jahan, I., Rupam, T. H., Palash, M., Rocky, K. A. & Saha, B. B. Energy efficient green synthesized MOF-801 for adsorption cooling applications. J. Mol. Liq. 345, 117760 (2022).

144. Steinert, D. M., Ernst, S. J., Henninger, S. K. & Janiak, C. Metal-Organic Frameworks as Sorption Materials for Heat Transformation Processes. Eur. J. Inorg. Chem. 2020, 4502–4515 (2020).

145. Aristov, Y. I. Challenging offers of material science for adsorption heat transformation: A review. Appl. Therm. Eng. 50, 1610–1618 (2013).

146. Wright, A. M., Rieth, A. J., Yang, S., Wang, E. N. & Dincǎ, M. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal-organic frameworks. Chem. Sci. 9, 3856–3859 (2018).

147. Paranthaman, S., Coudert, F. X. & Fuchs, A. H. Water adsorption in hydrophobic MOF channels. Phys. Chem. Chem. Phys. 12, 8123–8129 (2010).

148. Han, B. & Chakraborty, A. Adsorption characteristics of methyl-functional ligand MOF- 801 and water systems: Adsorption chiller modelling and performances. Appl. Therm. Eng. 175, (2020).

149. Ko, N. et al. Tailoring the water adsorption properties of MIL-101 metal-organic frameworks by partial functionalization. J. Mater. Chem. A 3, 2057–2064 (2015).

150. An, H. J., Sarker, M., Yoo, D. K. & Jhung, S. H. Water adsorption/desorption over metal-organic frameworks with ammonium group for possible application in adsorption heat transformation. Chem. Eng. J. 373, 1064–1071 (2019).

151. López-Magano, A., Jiménez-Almarza, A., Alemán, J. & Mas-Ballesté, R. Metal– Organic Frameworks (MOFs) and Covalent Organic Frameworks (COFs) Applied to Photocatalytic Organic Transformations. Catalysts 10, (2020).

152. Wu, D. et al. Direct calorimetric measurement of enthalpy of adsorption of carbon dioxide on CD-MOF-2, a green metal-organic framework. J. Am. Chem. Soc. 135, 6790– 6793 (2013).

153. García-Cuello, V., Moreno-Pirajan, J. C., Giraldo-Gutiérrez, L., Sapag, K. & Zgrablich, G. Adsorption micro calorimeter : DDDesign and electric calibration. J. Therm. Anal. Calorim. 97, 711–715 (2009).

154. Bellat, J. P. Calorimetry for gas adsorption : fundamentals and applications I – Fundamentals On Adsorption Concepts and Thermodynamics. (2019)

155. He, Y., Yun, J. H. & Seaton, N. A. Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: Isotherms and calorimetric heats of adsorption. Langmuir 20, 6668–6678 (2004).

156. Dunne, J. A. et al. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir 12, 5888–5895 (1996).

157. Hill, T. L. Statistical mechanics of adsorption. V. Thermodynamics and heat of adsorption. J. Chem. Phys. 17, 520–535 (1949).

158. Cardona-Martinez, N. & Dumesic, J. A. Applications of Adsorption Microcalorimetry to the Study of Heterogeneous Catalysis. in (eds. Eley, D. D., Pines, H. & Weisz, P. B. B. T.-A. in C.) vol. 38 149–244 (Academic Press, 1992).

159. Pan, H., Ritter, J. A. & Balbuena, P. B. Examination of the approximations used in determining the isosteric heat of adsorption from the Clausius-Clapeyron equation. Langmuir 14, 6323–6327 (1998).

160. Vaporization, D. & Two-, O. F. J. KOLACZKIEWICZ * and E. BAUER. 155, 700–714 (1985).

161. Koutsoyiannis, D. Clausius{\textendash}Clapeyron equation and saturation vapour pressure: simple theory reconciled with practice. Eur. J. Phys. 33, 295–305 (2012).

162. Chen, S. G. & Yang, R. T. Theoretical Basis for the Potential Theory Adsorption Isotherms. The Dubinin–Radushkevich and Dubinin–Astakhov Equations. Langmuir 10, 4244–4249 (1994).

163. Dovaston, N. G., McEnaney, B. & Weedon, C. J. On the application of the potential theory to the adsorption of carbon dioxide in microporous polymer carbons. Carbon N. Y. 10, 277–284 (1972).

164. Ding, T. F., Ozawa, S., Yamazaki, T., Watanuki, I. & Ogino, Y. A generalized treatment of adsorption of methane onto various zeolites. Langmuir 4, 392–396 (1988).

165. Amankwah, K. A. G. & Schwarz, J. A. A modified approach for estimating pseudo- vapor pressures in the application of the Dubinin-Astakhov equation. Carbon N. Y. 33, 1313–1319 (1995).

166. Dundar, E., Zacharia, R., Chahine, R. & Bénard, P. Performance comparison of adsorption isotherm models for supercritical hydrogen sorption on MOFs. Fluid Phase Equilib. 363, 74–85 (2014).

167. Chakraborty, A., Saha, B. B., Koyama, S. & Ng, K. C. On the thermodynamic modeling of the isosteric heat of adsorption and comparison with experiments. Appl. Phys. Lett. 89, 171901 (2006).

168. Askalany, A. A. & Saha, B. B. Towards an accurate estimation of the isosteric heat of adsorption – A correlation with the potential theory. J. Colloid Interface Sci. 490, 59– 63 (2017).

169. Ghazy, M., Askalany, A. A., Harby, K. & Ahmed, M. S. Adsorption isotherms and kinetics of HFC-404A onto bituminous based granular activated carbon for storage and cooling applications. Appl. Therm. Eng. 105, 639–645 (2016).

170. Askalany, A. A. & Saha, B. B. Derivation of isosteric heat of adsorption for non-ideal gases. Int. J. Heat Mass Transf. 89, 186–192 (2015).

171. Askalany, A. A. et al. Adsorption isotherms and heat of adsorption of difluoromethane on activated carbons. J. Chem. Eng. Data 58, 2828–2834 (2013).

172. Cimino, R. T., Kowalczyk, P., Ravikovitch, P. I. & Neimark, A. V. Determination of Isosteric Heat of Adsorption by Quenched Solid Density Functional Theory. Langmuir 33, 1769–1779 (2017).

173. Avci, G., Velioglu, S. & Keskin, S. High-Throughput Screening of MOF Adsorbents and Membranes for H2 Purification and CO2 Capture. ACS Appl. Mater. Interfaces 10, 33693–33706 (2018).

174. Han, S. et al. High-Throughput Screening of Metal–Organic Frameworks for CO2 Separation. ACS Comb. Sci. 14, 263–267 (2012).

175. Yang, Q., Liu, D., Zhong, C. & Li, J.-R. Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chem. Rev. 113, 8261–8323 (2013).

176. Vlugt, T. J. H., García-Pérez, E., Dubbeldam, D., Ban, S. & Calero, S. Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. J. Chem. Theory Comput. 4, 1107–1118 (2008).

177. Fischer, M., Hoffmann, F. & Fröba, M. Preferred Hydrogen Adsorption Sites in Various MOFs—A Comparative Computational Study. ChemPhysChem 10, 2647–2657 (2009).

178. Wilmer, C. E., Farha, O. K., Bae, Y.-S., Hupp, J. T. & Snurr, R. Q. Structure–property relationships of porous materials for carbon dioxide separation and capture. Energy Environ. Sci. 5, 9849–9856 (2012).

179. Pal, A. et al. On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. J. Ind. Eng. Chem. 69, 432–443 (2019).

180. El-Sharkawy, I. I. et al. Adsorption of ethanol onto parent and surface treated activated carbon powders. Int. J. Heat Mass Transf. 73, 445–455 (2014).

181. Lemmon, E. W., McLinden, M. O. & Huber, M. L. Reference Fluid Thermodynamic and Transport Properties. NIST Standard Reference Data Base 23. Version 9.1. (2013).

182. Kohler, J. A. et al. ANSI/ASHRAE Standard 15-2016; Safety Standard for Refrigeration Systems. (2016).

183. T.F. Stocker, D. Q., G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. & (Eds.), M. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (2013) doi:http://www.climatechange2013.org/images/report/WG1AR5_ALL_FINAL.pdf.

184. Saha, B. B., Habib, K., El-Sharkawy, I. I. & Koyama, S. Adsorption characteristics and heat of adsorption measurements of R-134a on activated carbon. Int. J. Refrig. 32, 1563– 1569 (2009).

185. Pal, A. et al. Experimental investigation of CO2 adsorption onto a carbon based consolidated composite adsorbent for adsorption cooling application. Appl. Therm. Eng. 109, 304–311 (2016).

186. Dunne, J. A., Rao, M., Sircar, S., Gorte, R. J. & Myers, A. L. Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O 2 , N 2 , Ar, CO 2 , CH 4 , C 2 H 6 , and SF 6 on NaX, H-ZSM-5, and Na-ZSM-5 Zeolites. Langmuir 12, 5896–5904 (1996).

187. Pal, A. et al. Ethanol adsorption uptake and kinetics onto waste palm trunk and mangrove based activated carbons. Appl. Therm. Eng. 122, 389–397 (2017).

188. Pal, A. et al. Study on biomass derived activated carbons for adsorptive heat pump application. Int. J. Heat Mass Transf. 110, 7–19 (2017).

189. Pal, A. et al. On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. J. Ind. Eng. Chem. 69, 432–443 (2019).

190. Uddin, K. et al. Adsorption characteristics of ethanol onto functional activated carbons with controlled oxygen content. Appl. Therm. Eng. 72, 211–218 (2014).

191. Pal, A. Study on novel functional activated carbon and composites for adsorption heat pump systems - Collections | Kyushu University Library. (2018).

192. Askalany, A., Saha, B. B., Uddin, K., Koyama, S. & Miyazaki, T. ADSORPTION ISOTHERMS OF R134a AND R32 ONTO ACTIVATED CARBONS Adsorption Heat Storage Systems View project Solar thermal collector performance enhancement View project ADSORPTION ISOTHERMS OF R134a AND R32 ONTO ACTIVATED CARBONS. vol. 147 https://www.researchgate.net/publication/260889657 (2013).

193. Fan, W. & Chakraborty, A. Isosteric heat of adsorption at zero coverage for AQSOA- Z01/Z02/Z05 zeolites and water systems. Microporous Mesoporous Mater. 260, 201– 207 (2018).

194. Xu, H., Prasetyo, L., Do, D. D. & Nicholson, D. The Henry constant and isosteric heat at zero loading for adsorption on energetically heterogeneous solids absolute versus excess. Chem. Eng. J. 395, 125035 (2020).

195. Prasetyo, L., Do, D. D. & Nicholson, D. A coherent definition of Henry constant and isosteric heat at zero loading for adsorption in solids – An absolute accessible volume. Chem. Eng. J. 334, 143–152 (2018).

196. Tan, S. (Johnathan), Do, D. D. & Nicholson, D. An efficient kinetic Monte Carlo scheme for computing Helmholtz free energy and entropy in bulk fluids and adsorption systems. Chem. Eng. J. 334, 1410–1421 (2018).

197. Chakraborty, A., Leong, K. C., Thu, K., Saha, B. B. & Ng, K. C. Theoretical insight of adsorption cooling. Appl. Phys. Lett. 98, 221910 (2011).

198. Meena, A. K., Mishra, G. K., Rai, P. K., Rajagopal, C. & Nagar, P. N. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 122, 161–170 (2005).

199. Deschênes, L., Lyklema, J., Danis, C. & Saint-Germain, F. Phase transitions in polymer monolayers: Application of the Clapeyron equation to PEO in PPO–PEO Langmuir films. Adv. Colloid Interface Sci. 222, 199–214 (2015).

200. Prausnitz, J. M. Molecular Thermodynamics for Chemical Process Design. Angew. Chemie Int. Ed. English 29, 1246–1255 (1990).

201. Xu, J. et al. Efficient Solar-Driven Water Harvesting from Arid Air with Metal–Organic Frameworks Modified by Hygroscopic Salt. Angew. Chemie Int. Ed. 59, 5202–5210 (2020).

202. Zhu, X. et al. Efficient CO2 capture from ambient air with amine-functionalized Mg– Al mixed metal oxides. J. Mater. Chem. A 8, 16421–16428 (2020).

203. Dauenhauer, P. J. & Abdelrahman, O. A. A Universal Descriptor for the Entropy of Adsorbed Molecules in Confined Spaces. ACS Cent. Sci. 4, 1235–1243 (2018).

204. Agarwal, R. K., Amankwah, K. A. G. & Schwarz, J. A. Analysis of adsorption entropies of high pressure gas adsorption data on activated carbon. Carbon N. Y. 28, 169–174 (1990).

205. Karlický, F. et al. Interplay between Ethanol Adsorption to High-Energy Sites and Clustering on Graphene and Graphite Alters the Measured Isosteric Adsorption Enthalpies. J. Phys. Chem. C 119, 20535–20543 (2015).

206. Myers, A. L. & Monson, P. A. Adsorption in porous materials at high pressure: Theory and experiment. Langmuir 18, 10261–10273 (2002).

207. Pal, A. et al. On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. J. Ind. Eng. Chem. 69, 432–443 (2019).

208. Steele, W. A. The interaction of gases with solid surfaces. (Pergamon Press, 1974).

209. C. Peirs, J., De Proft, F., Baron, G., Van Alsenoy, C. & Geerlings, P. Non-empirical quantum chemical calculation of Henry and separation constants and heats of adsorption for diatomic gases in faujasite. Chem. Commun. 531–532 (1997) doi:10.1039/A608061H.

210. El-Sharkawy, I. I., Jing Ming, H., Ng, K. C., Yap, C. & Saha, B. B. Adsorption Equilibrium and Kinetics of Gasoline Vapors onto Carbon-Based Adsorbents. J. Chem. Eng. Data 53, 41–47 (2008).

211. Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances: Third Edition. A Comprehensive Guide to the Hazardous Properties of Chemical Substances: Third Edition (John Wiley & Sons, Inc., 2006). doi:10.1002/9780470134955.

212. Checmical database provided by pubChem. https://pubchem.ncbi.nlm.nih.gov.

213. Ho, R. & Heng, J. Y. Y. A Review of Inverse Gas Chromatography and its Development as a Tool to Characterize Anisotropic Surface Properties of Pharmaceutical Solids. KONA Powder Part. J. 30, 164–180 (2013).

214. Cremer, E. & Huber, H. Messung von Adsorptionsisothermen an Katalysatoren bei hohen Temperaturen mit Hilfe der Gas-Festkörper-Eluierungschromatographie. Angew. Chemie 73, 461–465 (1961).

215. Schultz, J. & Martin, C. The Role of the Interface in Carbon Fibre-Epoxy Compositest. J. Adhes. 23, 45–60 (1987).

216. Myers, A. L. Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules. Colloids Surfaces A Physicochem. Eng. Asp. 241, 9–14 (2004).

217. Jeremias, F., Fröhlich, D., Janiak, C. & Henninger, S. K. Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF. RSC Adv. 4, 24073–24082 (2014).

218. Kayal, S., Chakraborty, A. & Teo, H. W. B. Green synthesis and characterization of aluminium fumarate metal-organic framework for heat transformation applications. Mater. Lett. 221, 165–167 (2018).

219. Legras, A., Kondor, A., Alcock, M., Heitzmann, M. T. & Truss, R. W. Inverse gas chromatography for natural fibre characterisation: dispersive and acid-base distribution profiles of the surface energy. Cellulose 24, 4691–4700 (2017).

220. Dorris, G. M. & Gray, D. G. Adsorption, spreading pressure, and london force interactions of hydrocarbons on cellulose and wood fiber surfaces. J. Colloid Interface Sci. 71, 93–106 (1979).

221. Dorris, G. M. & Gray, D. G. Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J. Colloid Interface Sci. 77, 353–362 (1980).

222. Shi, B., Wang, Y. & Jia, L. Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. J. Chromatogr. A 1218, 860–862 (2011).

223. Voelkel, A. Inverse gas chromatography in the examination of acid-base and some other properties of solid materials. Stud. Surf. Sci. Catal. 99, 465–477 (1996).

224. Fowkes, F. M. Attractive Forces at Interfaces. Ind. Eng. Chem. 56, 40–52 (1964).

225. Dong, S., Brendlé, M. & Donnet, J. B. Study of solid surface polarity by inverse gas chromatography at infinite dilution. Chromatographia 28, 469–472 (1989).

226. Muttakin, M., Islam, M. A., Malik, K. S., Pahwa, D. & Saha, B. B. Study on optimized adsorption chiller employing various heat and mass recovery schemes. Int. J. Refrig. 126, 222–237 (2021).

227. Rückriem, M. et al. Inverse gas chromatography for determining the dispersive surface energy of porous silica. Colloids Surfaces A Physicochem. Eng. Asp. 357, 21–26 (2010).

228. Ltd., S. M. S. Determination of the Surface Energy of Nanomaterials Using Inverse Gas Chromatography. AZoNano (2019).

229. Emi, L. et al. Process for preparing porous metal-organic frameworks based on aluminium fumarate. (2012).

230. Ke, F. et al. Fumarate-based metal-organic frameworks as a new platform for highly selective removal of fluoride from brick tea. Sci. Rep. 8, 1–11 (2018).

231. Simon, M. A. et al. Hydrothermal Synthesize of HF-Free MIL-100(Fe) for Isoniazid- Drug Delivery. Sci. Rep. 9, 1–11 (2019).

232. Autié-castro, G., Reguera, E., Cavalcante, C. L., Araujo, A. S. & Rodríguez-castellón, E. Inorganica Chimica Acta Surface acid-base properties of Cu-BTC and Fe-BTC MOFs. An inverse gas chromatography and n -butylamine thermo desorption study. Inorganica Chim. Acta 507, 119590 (2020).

233. Gutmann, V. The extension of the donor-acceptor concept. Pure Appl. Chem. 51, 2197– 2210 (1979).

234. Mukhopadhyay, P. & Schreiber, H. P. Aspects of acid-base interactions and use of inverse gas chromatography. Colloids Surfaces A Physicochem. Eng. Asp. 100, 47–71 (1995).

235. Voelkel, A., Strzemiecka, B., Adamska, K. & Milczewska, K. Inverse gas chromatography as a source of physiochemical data. J. Chromatogr. A 1216, 1551–1566 (2009).

236. Fowkes, F. M. Calculation of work of adhesion by pair potential suummation. J. Colloid Interface Sci. 28, 493–505 (1968).

237. van Oss, C. J., Good, R. J. & Chaudhury, M. K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4, 884–891 (1988).

238. Alvarez, E. et al. The Structure of the Aluminum Fumarate Metal-Organic Framework A520. Angew. Chemie Int. Ed. 54, 3664–3668 (2015).

239. Canivet, J., Fateeva, A., Guo, Y., Coasne, B. & Farrusseng, D. Water adsorption in MOFs: Fundamentals and applications. Chem. Soc. Rev. 43, 5594–5617 (2014).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る