リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Forced expression of α2,3-sialyltransferase IV rescues impaired heart development in α2,6-sialyltransferase I-deficient medaka」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Forced expression of α2,3-sialyltransferase IV rescues impaired heart development in α2,6-sialyltransferase I-deficient medaka

Omoto, Takayuki Wu, Di Maruyama, Emi Tajima, Katsue Hane, Masaya Sato, Chihiro Kitajima, Ken 名古屋大学

2023.03.15

概要

Sialic acids (Sias) are negatively charged nine-carbon sugars that occur at the non-reducing
ends of glycans in proteins and lipids on the cell surface [1-3], and are involved in ligandreceptor and cell-cell interactions during fertilization, embryogenesis, development, immune
responses, and brain functions [1,4-7]. In particular, Sias have been demonstrated to play an
essential role in survival of embryos in mice and medaka fish, because a loss of critical enzymes
in the Sia synthetic pathway leads to lethality during development: Mice deficient in the UDPN-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene or the CMP-Sia
synthetase gene (CMAS) gene are lethal during early development [8,9]; Medaka fish with a
point-mutated CMAS gene died in young fry [10].
One of unique features of Sias is a linkage diversity [1,5,7]. Sias are often linked to
galactose (Gal) and N-acetylgalactosamine (GalNAc) residues by α2,3- and α2,6-linkages in
glycoproteins, whereas in rare cases, they are linked to Sia residues by α2,8- and α2,9-linkages
in oligo/polysialic acid chains [5,6]. The linkage diversity has significance in case of specific
lectin-ligand interactions in infection and immune systems. For example, the human
hemagglutinin of influenza virus A binds with Siaα2,6Gal, but not Siaα2,3Gal, termini of
glycans of host cells in the viral infection [11,12]. The human sialic acid-binding
immunoglobulin-type lectins (Siglecs) bind with Sia residues in a linkage-specific manner in
self/non-self recognition in immune systems [13-15]. However, it remains unknown if the
linkage diversity always has some critical meanings. Indeed, sialylation is known to be
significant in determining lifetime of blood glycoproteins by recruiting them, immediately after
desialylation, to hepatocytes from blood stream by the asialoglycoprotein receptor, a Galspecific lectin. This happens irrespective of differences of Siaα2,6Gal or Siaα2,3Gal linkage
[16,17]. In this case, the linkage difference of Sia does not look significant; however, biological
functions of Siaα2,6Gal or Siaα2,3Gal residues in the blood glycoproteins prior to its removal
still remain to be elucidated. ...

この論文で使われている画像

参考文献

[1] Schauer R, Kamerling JP. (2018) Exploration of the sialic acid world. Adv Carbohydr Chem

Biochem. 75:1-213.

[2] "'71/  

  7+ .:3'48 6754+ 95 ':95/33:4/9> 362/)'9/548 ,753 +;52:9/54'7>

).'4-+8/4.53/4/48/'2/)')/*(/525-> – 

[3] Kitajima K. Varki N, Sato C. (2015) Advanced technologies in sialic acid and

sialoglycoconjugate analysis. Top Curr Chem. 367:75-103.

[4] Schauer R. (2004) Sialic acids: fascinating sugars in higher animals and man. Zoology

(Jena). 107, 49-64.

[5] Sato C, Kitajima K. (2019) Sialic acids in neuology. Adv Carbohydr Chem Biochem. 76:164.

[6] Sato C, Kitajima K. (2021) Polysialylation and disease. Mol Aspects Med. 79, 100892.

[7] Angata T, Varki A. (2002) Chemical diversity in the sialic acids and related alpha-keto acids:

an evolutionary perspective. Chem Rev. 102, 439-69.

[8] Schwarzkopf M, Knobeloch KP, Rohde E, et al. (2002) Sialylation is essential for early

development in mice. Proc Natl Acad Sci USA. 99, 5267-5270.

[9] Weinhold B, Sellmeier M, Schaper W, et al. (2012) Deficits in sialylation impair podocyte

maturation. J Am Soc Nephrol. 23, 1319-1328.

[10] #:7'1'<':0/9'+9'2

65/493:9'9/54/49.+*53'/45, 8/'2/)

')/*8>49.+9'8+2+'*8952+9.'2/9>5,3+*'1'*:+956759+/4/4852:(/2/9>

  



[11] Rogers GN, Paulson JC. (1983) Receptor determinants of human and animal influenza



virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species

of origin. Virology, 127, 361–373.

[12] Connor RJ, Kawaoka Y, Webster RG, Paulson JC. (1994) Receptor specificity in human,

avian, and equine H2 and H3 influenza virus isolates. Virology. 205, 17–23.

[13] Crocker PR, Paulson JC, Varki A. (2007) Siglecs and their roles in the immune system.

Nat Rev Immunol. 7, 255-66.

[14] Angata T, Varki A. 

/8)5;+7> )2'88/,/)'9/54+;52:9/54 '4**/;+78/9>5, /-2+)8

Mol Aspects Med. 18, 101117.

[15] Yamakawa N, Yasuda Y, Yoshimura A, et al. (2020) Discovery of a new sialic acid binding

region that regulates Siglec-7. Sci Rep. 10, 8647.

[16] Ellies LG, Ditto D, Levy GG, et al. (2002) Sialyltransferase ST3Gal-IV operates as a

dominant modifier of hemostasis by concealing asialoglycoprotein receptor ligands. Proc

Natl Acad Sci USA. 99, 10042-7.

[17] Bridges K, Harford J, Ashwell G, Klausner RD. (1982) Fate of receptor and ligand during

endocytosis of asialoglycoproteins by isolated hepatocytes.Proc Natl Acad Sci USA. 79,

350-354.

[18] Hou S, Hang Q, Isaji T, Lu J, Fukuda T, Gu J. (2016) Importance of membrane-proximal

N-glycosylation on integrin β1 in its activation and complex formation. FASEB J. 30, 41204131.

[19] Seales EC, Jurado GA, Brunson BA, et al. (2005) Hypersialylation of beta1 integrins,

observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating

cell motility. Cancer Res. 65, 4645-4652.

[20] Recchi MA, Hebbar M, Hornez L, et al. (1998) Multiplex reverse transcription polymerase

chain reaction assessment of sialyltransferase expression in human breast cancer. Cancer

Res.58, 4066-70.

[21] Swindall AF, Bellis SL. (2022) Sialylation of the Fas Death Receptor by ST6Gal-I Provides

Protection against Fas-mediated Apoptosis in Colon Carcinoma Cells. J Biol Chem. 286,

22982-22990.

&54- 44 '45=+9'2

  :29/62+-+453++4-/4++7/4-:8/4-  '8

>89+38

 

& <'4- # : $ +>54  +9 '2 

  ,,/)/+49 -+453+ +*/9/4- /4 ?+(7',/8. :8/4- '

  '88>89+3

 





& Shimizu A, Shimizu N. (2013) Dual promoter expression system with insulator ensures a

stringent tissue-specific regulation of two reporter genes in the transgenic fish. Transgenic

Res. 22, 435-444. 

[25] Ertunc N, Phitak T, Wu D, et al. (2022) D2,8-sialyltransferase 6 (ST8Sia6) localizes in the

ER and enhances the anchorage-independent cell growth in cancer. Sci Rep. 12, 12496.

&48'/ /458./9' 

 !'7-+9+*3:9'-+4+8/8:8/4-  '88>89+3/43+*'1'





 

[27] Hatanaka R, Araki E, Hane M, et al. (2022) Sulfation of sialic acid is ubiquitous and

essential for vertebrate development. Biochem Biophys Res Commun. 11, 608.

&!'1'8./3' !8:0/ !8:0/3595 

536'7/8545,9.+4?>3'9/) 756+79/+85,

5:8+ ș'2')958/*+ Ș

 /'2>297'48,+7'8+8 !'2'4*

 







[29] Kono M, Ohyama Y, Lee Y, et al. (1997) Mouse β-galactoside α2,3-sialyltransferases:

comparison of in vitro substrate specificities and tissue specific expression. Glycobiology.

7, 469-479.

[30] Ishii A, Ohta M, Watanabe Y, et al. (1998) Expression coning and functional

characterization of human cDNA for ganglioside GM3 synthase. J Biol Chem. 273, 31652–

31655.

[31] Stephens LE, Sutherland AE, Klimanskaya IV, et al. (1995) Deletion of B1 integrins in

mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–

1895.

[32] Chammas R, Veiga SS, Travassos LR, Brentani RR. (1993) Functionally distinct roles

for glycosylation of alpha and beta integrin chains in cell-matrix interactions. Proc Natl

Acad Sci USA. 90, 1795-1799.

[33] Gu J, Taniguchi N. (2004) Regulation of integrin functions by N-glycans. Glycoconj J.

21, 9-15.

[34] Hennet T, Chui D, Paulson JC, Marth JD. (1998) Immune regulation by the ST6Gal

sialyltransferase. Proc Natl Acad Sci USA. 95, 4504-4509.

[35] Grewal PK, Uchiyama S, Ditto D, Varki N, Le DT, Nizet V, Marth JD. (2008) The Ashwell

receptor mitigates the lethal coagulopathy of sepsis. Nat Med. 14, 648–655.

[36] Ohmi Y, Nishikaze T, Kitaura Y, et al. (2021) Majority of alpha2,6-sialyated glycans in the

adult mouse brain exist in O-glycans: SALSA-MS analysis for knockout mice of alphs2,6sialyltransferase genes. Glycobiology. 31, 557–570.

[37] Deng W, Ednie AR, Qi J, Bennett ES. (2016) Aberrant sialylation causes dilated

cardiomyopathy and stress-induced heart failure. Basic Res Cardiol. 111, 57.



Legends to figures

Fig. 1. Localization and significance of α2,6- and α2,3-sialosides in medaka embryos at 01 dpf. A. Structures of Siaα2,6Gal (upper) and Siaα2,3Gal (lower). R, other monosaccharides;

B. Whole mount immunofluorescent staining of 16~32-cell-stage embryos using FITC-SSA

and FITC-MAA. DIC, differential interference contrast. A dotted square is enlarged at right

panel; C. Cartooning of lectins injection into PVS of 1~4-cell embryos (upper). Fluorescence

stayed at the PVS at 2 dpf (lower right), after FITC-dextran was injected there at 0 dpf (lower

left); D. SNA, MAA, and mIgG (control) were PVS-injected in 1~4-cell embryos and the effects

were observed at gastrula embryos at 18 h-post-injection. Embryos of dead, abnormal, and

normal morphology were counted. n, number of embryos tested.

Fig. 2. Distribution of Siaα2,6Gal epitope and expression profiles of ST6Gal I and ST6Gal

II in WT. A. SNA lectin blotting of 9 dpf embryos before (-) and after (+) PNGase F treatment

(LB: SNA). IB: β-actin, loading control; Human transferrin (hTf) was used as a control for the

lectin blotting; B. Developmental expression of ST6Gal I and ST6Gal II by qPCR. The

expressions were normalized with the β-actin expression. The bars represent standard

deviations from the triplicated experiments.

Fig. 3. Phenotypes of the ST6Gal I-KO and ST6Gal II-KO medaka embryos. A. Diagrams

of the target site in the ST6Gal I and ST6Gal II genes and their base sequences; B. Genotyping

of the (+/+), (+/-), and (-/-) medaka for ST6Gal I (upper) and ST6Gal II (lower) genes. N.C.,

water instead of the templates; C. Upper, DIC images of WT (left), ST6Gal I-KO (middle), and

ST6Gal I-KO (right) embryos at 7 dpf. Scale bars, 85 µm. Lower, Fluorescent images

(mCherry) of Tg941 WT (left), ST6Gal I-KO (middle), and ST6Gal II-KO (right) embryos at 7

dpf. A, atrium; V, ventricle. Scale bars, 85 µm; D. Monitoring of heartbeat of Tg941 WT (left),

ST6Gal I-KO (middle), and ST6Gal II-KO (right) embryos at 7 dpf for 2 s. The heartbeats of

atrium (black) and ventricle (gray) were analyzed by the FIJI software. Relative area stands for

their sizes, and most dilated ones were set to 1.0.



Fig. 4. Rescue experiments of ST6Gal I-KO by forced expression of ST6Gal I- and ST6Gal

II-mRNAs. A, B, C. DIC images of the embryos at 7 dpf that were injected with DsRed mRNA

(control, A), ST6Gal I mRNA (B), and ST6Gal II mRNA (C) at 1-cell embryos. Scale bars, 85

µm; D. Summary of the heart phenotypes of ST6Gal I-KO embryos at 7 dpf injected with DsRed,

ST6Gal I, and ST6Gal II mRNAs. n, number of experiments; Dead, Abnormal, Cardiac

abnormality, and Normal stand for lethality, severe anomalous morphologies, cardiac

abnormalities, and normal embryos; E. ST6Gal I (left) and ST6Gal II (right) expression in

DsRed, ST6Gal I, and ST6Gal II mRNAs-injected ST6Gal I-KO embryos as evaluated by qPCR.

The expression level was normalized by that of β-actin. The bars represent standard deviations

from the triplicated experiments. **, p < 0.005; ***, p < 0.0005; F. (upper)SNA lectin blotting

of DsRed, ST6Gal I, and ST6Gal II mRNAs-injected ST6Gal I-KO embryos at 7 dpf before (-)

and after (+) sialidase treatment (LB: SNA). IB: β-actin, loading control; hTf was used as a

control for the lectin blotting. (Lower) quantification of SNA epitopes/β-actin values calculated

from the above data. The bars represent standard deviations from the triplicated experiments.

Fig. 5. Rescue experiments of ST6Gal I-KO by forced expression of ST3Gal IV- and

ST3Gal V-mRNAs. A, B, C. DIC images of the embryos at 7 dpf that were injected with DsRed

mRNA (control, A), ST3Gal IV mRNA (B), and ST3Gal V mRNA (C) at 1-cell embryos. Scale

bars, 85 µm; D. Summary of the heart phenotypes of ST6Gal I-KO embryos at 7 dpf injected

with DsRed, ST3Gal IV, and ST3Gal V mRNAs. n, number of experiments; Dead, Abnormal,

Cardiac abnormality, and Normal stand for lethality, severe anomalous morphologies, cardiac

abnormalities, and normal embryos; E. ST3Gal IV (left) and ST3Gal V (right) expression in

DsRed, ST3Gal IV, and ST3Gal V mRNAs-injected ST6Gal I-KO embryos as evaluated by

qPCR. The expression level was normalized by that of β-actin. The bars represent standard

deviations from the triplicated experiments. *, p < 0.05; ***, p < 0.0005. F. MAA lectin blotting

(upper) of DsRed and ST3Gal IV mRNAs-injected ST6Gal I-KO embryos at 7 dpf before (-)

and after (+) sialidase treatment (LB: MAA). IB: β-actin, loading control; Ft was used as a

control for the lectin blotting. (Lower) quantification of MAA epitopes/β-actin values. The bars

represent standard deviations from the triplicated experiments; G. MAA lectin blotting (upper)



of DsRed and ST3Gal V mRNAs-injected ST6Gal I-KO embryos at 7 dpf. (Lower)

quantification of MAA epitopes/β-actin values. For details, see the legend for F.



Fig. 1

HOH2C

HO

AcHN

HO

OH

HO

COO

OH

HOH2C

HO

AcHN

COO

OH

OH

6 CH2

OH

OH 6

CH2OH

OH





 







Glass needle

FE

Embryo

Ratio of phenotype

PVS

(%)

100

n=9

n=20

n=17

n=37

n=16

80

Dead

60

Abnormal

40

20

Normal

250

0 dpf

2 dpf

n=19

500

mIgG

250

500

SNA

250

500 (μg/mL)

MAA

Fig. 2

WT

PNGase F

(kDa)

210

140

100

70

55



− + − +

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

LB: SNA

Copy numbers

40

35

IB: β-actin

ST6Gal I

ST6Gal II

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

dpf

Fig. 3

E1 E2 E3

E4 E5 E6 E7E8

E9

ST6Gal I

E2 E3

E4E5 E6

 

ST6Gal I

   





WT CTCT

GCAT

ST6Gal I (Ins8) CTCT CATGCCTC GCAT

E1



   

E7

ST6Gal II

 





WT TGAG CAGT GGGA

ST6Gal II (Del4) TGAG

GGGA

ST6Gal I-KO

ST6Gal II-KO

mCherry

DIC

WT

Relative area

WT

ST6Gal I-KO

ST6Gal II-KO

1.1

1.1

1.1

1.0

1.0

1.0

0.9

0.9

0.9

0.8

0.8

0.8

0.7

0 0.5 1.0 1.5 2.0

0.7

0.7

0 0.5 1.0 1.5 2.0

Time (s)

0 0.5 1.0 1.5 2.0

ST6Gal I-KO

+ DsRed mRNA

Phenotype ratio

ST6Gal I-KO

+ ST6Gal I mRNA

(%)

n=6

n=14

ST6Gal I-KO

+ ST6Gal II mRNA

n=6

100

Dead

80

60

Abnormal

40

Cardiac abnormality

20

Normal

DsRed

ST6Gal I ST6Gal II

ST6Gal I

ST6Gal II

***

**

0.0025

0.0020

0.0015

0.0010

0.0005

0.0015

0.0010

0.0005

DsRed

ST6Gal I

DsRed

sialidase − + − + − +

(kDa)

DsRed

ST6Gal I

ST6Gal II

−+ −+ −+

ST6Gal II

−+ −+ −+

hTf



210

140

100

70

55

40

35

SNA/β-actin value

Copy numbers

Fig. 4

−+

70

55

LB: SNA

IB: β-actin

SNA epitope

SNA epitope

1.5



1.0



0.5



DsRed

ST6Gal I

DsRed

ST6Gal II

Phenotype ratio

ST6Gal I-KO

+ DsRed mRNA

ST6Gal I-KO

+ ST3Gal IV mRNA

(%)

n=6

n=7

80

60

Abnormal

Cardiac abnormality

40

20

Normal

DsRed ST3Gal IV ST3Gal V

ST3Gal V

***

0.08

0.0008

0.06

0.0006

0.04

0.0004

0.02

0.0002

DsRed

ST3Gal IV

ST6Gal IV

sialidase − + − + − +

(kDa)

−+ −+ −+

Ft

(kDa) − +

210

140

100

70

55

LB: MAA

40

35

IB: β-actin

MAA epitope

1.0

0.5

ST3Gal IV

ST3Gal V

DsRed

70

55

DsRed

DsRed

ST6Gal V

sialidase − + − + − +

(kDa)

−+ −+ −+

Ft

(kDa) − +

210

140

100

70

55

70

55

LB: MAA

40

35

MAA/β-actin value

Copy numbers

ST3Gal IV

DsRed

n=5

Dead

ST6Gal I-KO

+ ST3Gal V mRNA

100

MAA/β-actin value

Fig. 5

IB: β-actin

MAA epitope

1.5

1.0

0.5

DsRed

ST3Gal V

&RQIOLFWRI,QWHUHVW

Conflict of interest

The authors declare no conflicts of interest regarding this manuscript

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る