リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Multi-scalar theories of gravity with direct matter couplings and their parametrized post-Newtonian parameters」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Multi-scalar theories of gravity with direct matter couplings and their parametrized post-Newtonian parameters

Lacombe, Osmin Mukohyama, Shinji 京都大学 DOI:10.1088/1475-7516/2023/08/054

2023.08

概要

We study theories of gravity including, in addition to the metric, several scalar fields in the gravitational sector. The particularity of this work is that we allow for direct couplings between these gravitating scalars and the matter sector, which can generally be different for the source and the probe of gravity, in addition to the universal interactions generated by the Jordan frame metric. The weak gravity regime of this theory, which would describe solar-system experiments, is studied using the parametrized post-Newtonian (PPN) formalism. We derive the expression of the ten parameters of this formalism. Among them, ζ₃ and ζ₄ are modified with respect to their values in the theories without direct couplings. This fact holds even after eliminating the direct couplings between the gravitating scalars and the energy density of the source, by redefinition of the Jordan frame. All other PPN parameters are insensitive to the direct couplings once in the correctly identified Jordan frame. When direct couplings are different for the source and the probe of gravity, they make non-relativistic probes deviate from the geodesics of the PPN metric in this frame, already at Newtonian order. Such couplings would thus be directly detectable and would have been excluded by experiments. This shows that, contrary to the claims in the recent literature, it is impossible to screen the presence of gravitating scalars relying only on a curved target space and direct couplings to matter.

参考文献

[1] C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev.

124 (1961) 925 [INSPIRE].

[2] E. Witten, Dimensional Reduction of Superstring Models, Phys. Lett. B 155 (1985) 151

[INSPIRE].

[3] H.P. Nilles, The Role of Classical Symmetries in the Low-energy Limit of Superstring Theories,

Phys. Lett. B 180 (1986) 240 [INSPIRE].

[4] C.P. Burgess, A. Font and F. Quevedo, Low-Energy Effective Action for the Superstring, Nucl.

Phys. B 272 (1986) 661 [INSPIRE].

[5] J.R. Ellis, A.B. Lahanas, D.V. Nanopoulos and K. Tamvakis, No-Scale Supersymmetric Standard

Model, Phys. Lett. B 134 (1984) 429 [INSPIRE].

[6] C.P. Burgess et al., UV Shadows in EFTs: Accidental Symmetries, Robustness and No-Scale

Supergravity, Fortsch. Phys. 68 (2020) 2000076 [arXiv:2006.06694] [INSPIRE].

[7] S. Gottlober, H.J. Schmidt and A.A. Starobinsky, Sixth Order Gravity and Conformal

Transformations, Class. Quant. Grav. 7 (1990) 893 [INSPIRE].

[8] B. Ratra and P.J.E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field,

Phys. Rev. D 37 (1988) 3406 [INSPIRE].

[9] R.R. Caldwell, R. Dave and P.J. Steinhardt, Cosmological imprint of an energy component with

general equation of state, Phys. Rev. Lett. 80 (1998) 1582 [astro-ph/9708069] [INSPIRE].

[10] E.J. Copeland, A.R. Liddle and D. Wands, Exponential potentials and cosmological scaling

solutions, Phys. Rev. D 57 (1998) 4686 [gr-qc/9711068] [INSPIRE].

[11] S. Tsujikawa, Quintessence: A Review, Class. Quant. Grav. 30 (2013) 214003

[arXiv:1304.1961] [INSPIRE].

[12] M. Cicoli et al., De Sitter vs Quintessence in String Theory, Fortsch. Phys. 67 (2019) 1800079

[arXiv:1808.08967] [INSPIRE].

[13] P. Jordan, Formation of the Stars and Development of the Universe, Nature 164 (1949) 637

[INSPIRE].

[14] C.M. Will, The Confrontation between General Relativity and Experiment, Living Rev. Rel. 17

(2014) 4 [arXiv:1403.7377] [INSPIRE].

– 29 –

JCAP08(2023)054

Γi00

= γ (δij U,k + δik U,j − δjk U,i ) ,



∂ h

2γ +

Vi + Wi ,

= −U,i + i (β + γ)U − Φ −

∂x

∂t

(A.18)

[15] J. Khoury and A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space,

Phys. Rev. Lett. 93 (2004) 171104 [astro-ph/0309300] [INSPIRE].

[16] T. Damour and A.M. Polyakov, The string dilaton and a least coupling principle, Nucl. Phys. B

423 (1994) 532 [hep-th/9401069] [INSPIRE].

[17] K.A. Olive and M. Pospelov, Environmental dependence of masses and coupling constants, Phys.

Rev. D 77 (2008) 043524 [arXiv:0709.3825] [INSPIRE].

[18] A.I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B 39 (1972) 393

[INSPIRE].

[20] C.P. Burgess and F. Quevedo, Axion homeopathy: screening dilaton interactions, JCAP 04

(2022) 007 [arXiv:2110.10352] [INSPIRE].

[21] P. Brax, C.P. Burgess and F. Quevedo, Light Axiodilatons: Matter Couplings, Weak-Scale

Completions and Long-Distance Tests of Gravity, arXiv:2212.14870 [INSPIRE].

[22] A.S. Eddington, The mathematical theory of relativity, Cambridge University Press (1923).

[23] H.P. Robertson, Relativity and Cosmology, in Space Age Astronomy, A.J. Deutsch and W.B.

Klemperer eds., LLC (1962), p. 228.

[24] L.I. Schiff, Comparison of theory and observation in general relativity, SITP-181 (1965)

[INSPIRE].

[25] C.M. Will, Theoretical Frameworks for Testing Relativistic Gravity. 2. Parametrized

Post-Newtonian Hydrodynamics, and the Nordtvedt Effect, Astrophys. J. 163 (1971) 611

[INSPIRE].

[26] C.M. Will and K. Nordtvedt Jr., Conservation Laws and Preferred Frames in Relativistic

Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism, Astrophys. J. 177 (1972)

757 [INSPIRE].

[27] C.M. Will, Relativistic Gravity tn the Solar System. 111. Experimental Disproof of a Class of

Linear Theories of Gravitation, Astrophys. J. 185 (1973) 31 [INSPIRE].

[28] T. Damour and G. Esposito-Farese, Tensor multiscalar theories of gravitation, Class. Quant.

Grav. 9 (1992) 2093 [INSPIRE].

[29] P.G. Bergmann, Comments on the scalar tensor theory, Int. J. Theor. Phys. 1 (1968) 25

[INSPIRE].

[30] R.V. Wagoner, Scalar tensor theory and gravitational waves, Phys. Rev. D 1 (1970) 3209

[INSPIRE].

[31] K. Nordtvedt Jr., PostNewtonian metric for a general class of scalar tensor gravitational theories

and observational consequences, Astrophys. J. 161 (1970) 1059 [INSPIRE].

[32] C.M. Will, Theory and experiment in gravitational physics, Cambridge University Press (1993)

[INSPIRE].

[33] K. Lin, S. Mukohyama, A. Wang and T. Zhu, Post-Newtonian approximations in the

Hořava-Lifshitz gravity with extra U(1) symmetry, Phys. Rev. D 89 (2014) 084022

[arXiv:1310.6666] [INSPIRE].

[34] D.M. Eardley, Observable effects of a scalar gravitational field in a binary pulsar, The

Astrophysical Journal 196 (1975) L59.

[35] K. Nordtvedt, Equivalence Principle for Massive Bodies. 2. Theory, Phys. Rev. 169 (1968) 1017

[INSPIRE].

– 30 –

JCAP08(2023)054

[19] P. Brax, Screening mechanisms in modified gravity, Class. Quant. Grav. 30 (2013) 214005

[INSPIRE].

[36] P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum

ibid. 52 (1984) 695] [INSPIRE].

[37] P. Sikivie, Axion Cosmology, Lect. Notes Phys. 741 (2008) 19 [astro-ph/0610440] [INSPIRE].

[38] P. Sikivie, Invisible Axion Search Methods, Rev. Mod. Phys. 93 (2021) 015004

[arXiv:2003.02206] [INSPIRE].

[39] S.B. Lambert and C. Le Poncin-Lafitte, Determination of the relativistic parameter gamma using

very long baseline interferometry, Astron. Astrophys. 499 (2009) 331 [arXiv:0903.1615]

[INSPIRE].

JCAP08(2023)054

– 31 –

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る