リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Enhancement of ethanol production and cell growth in budding yeast by direct irradiation of low-temperature plasma」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Enhancement of ethanol production and cell growth in budding yeast by direct irradiation of low-temperature plasma

Tanaka, Hiromasa Matsumura, Shogo Ishikawa, Kenji Hashizume, Hiroshi Ito, Masafumi Nakamura, Kae Kajiyama, Hiroaki Kikkawa, Fumitaka Ito, Mikako Ohno, Kinji Okazaki, Yasumasa Toyokuni, Shinya Mizuno, Masaaki Hori, Masaru 名古屋大学

2022.01

概要

Low-temperature plasma (LTP) has been widely used for medicine and agriculture1-7). Indirect plasma treatments such as plasma-activated medium (PAM) as well as direct plasma treatments have broadened the ways to apply the LTP8-11). Since reaction products among LTP and solutions play some roles on physiological responses, indirect plasma treatments are important, however, the effects by UV/VUV and direct interactions between short-lived reactive species and biological surface are brought by direct plasma treatments. Thus, it is essential to investigate effects by both direct and indirect plasma irradiations.

The budding yeast (Saccharomyces cerevisiae) is an important eukaryotic model organism with well-developed genetics and molecular biology12-14). The effects of LTP on budding yeast have been investigated to understand molecular mechanisms common to eukaryotic cells15-20). For example, Hashizume et al., showed that the growth of budding yeasts’ cells was regulated primarily in response to the total dose of oxygen atoms17). LTP induces apoptosis through reactive oxygen species (ROS) on budding yeast cells as well as mammalian cells18). There are two superoxide dismutases in budding yeast: Sod1p and Sod2p. Increased LTP resistance was observed in strains overexpressing SOD1 or SOD218). On the other hand, increased LTP sensitivity was observed in strains deleting SOD1 or SOD219). These results suggest that ROS generated by LTP are prominent factor in killing of budding yeasts. In addition to studies in basic science, budding yeast has been used in fermentation processes for making bioethanol21-24). LTP might be useful to improve the production of bioethanol by budding yeast25).

In this study, we investigated ethanol production of budding yeast treated with LTP directly and plasma-activated medium (PAM). The ethanol production was increased not by PAM but by direct plasma irradiation. We further demonstrated glucose consumption and glycolytic activity were increased by direct plasma irradiation of budding yeast cells. These results suggest that LTP is a promising strategy for producing bioethanol.

この論文で使われている画像

参考文献

1) G. Fridman, G. Friedman, A. Gutsol, A.B. Shekhter, V.N. Vasilets and A. Fridman: Plasma Process Polym. 5 [6](2008)503. [in English].

2) M. Laroussi, Kong, M., Morfill, G., and Stolz, W. : Plasma Medicine: Applications of Low Temperature Gas Plasmas in Medicine and Biology (Cambridge University Press, Cambridge, UK, 2012).

3) K.D. Weltmann and T. von Woedtke: Plasma Phys Contr F. 59 [1](2017) [in English].

4) M. Ito, T. Ohta and M. Hori: J Korean Phys Soc. 60 [6](2012)937.

5) K. Takaki, K. Takahashi, D. Hamanaka, R. Yoshida and T. Uchino: Jpn J Appl Phys. 60 [1](2021).

6) M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk and J.L. Zimmermann: New J Phys. 11 (2009)115012. [in English].

7) T. Iwase, Y. Kamaji, S.Y. Kang, K. Koga, N. Kuboi, M. Nakamura, N. Negishi, T. Nozaki, S. Nunomura, D. Ogawa, M. Omura, T. Shimizu, K. Shinoda, Y. Sonoda, H. Suzuki, K. Takahashi, T. Tsutsumi, K. Yoshikawa, T. Ishijima and K. Ishikawa: Jpn J Appl Phys. 58 [SE](2019).

8) H. Tanaka, S. Bekeschus, D. Yan, M. Hori, M. Keidar and M. Laroussi: Cancers. 13 [7](2021).

9) H. Tanaka, K. Ishikawa, M. Mizuno, S. Toyokuni, H. Kajiyama, F. Kikkawa, H.R. Metelmann and M. Hori: Rev. Mod. Plasma Phys. . 1 [1](2017)1: 3.

10) H. Tanaka, M. Mizuno, K. Ishikawa, K. Nakamura, H. Kajiyama, H. Kano, F. Kikkawa and M. Hori: Plasma Medicine. 1 [3-4 (2013)265.

11) P.J. Bruggeman, M.J. Kushner, B.R. Locke, J.G.E. Gardeniers, W.G. Graham, D.B. Graves, R.C.H.M. Hofman-Caris, D. Maric, J.P. Reid, E. Ceriani, D.F. Rivas, J.E. Foster, S.C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S.M. Thagard, D. Minakata, E.C. Neyts, J. Pawlat, Z.L. Petrovic, R. Pflieger, S. Reuter, D.C. Schram, S. Schroter, M. Shiraiwa, B. Tarabova, P.A. Tsai, J.R.R. Verlet, T. von Woedtke, K.R. Wilson, K. Yasui and G. Zvereva: Plasma Sources Sci T. 25 [5](2016) [in English].

12) R. Yu and J. Nielsen: Curr Opin Biotechnol. 63 (2020)63.

13) C. Ceccatelli Berti, G. di Punzio, C. Dallabona, E. Baruffini, P. Goffrini, T. Lodi and C. Donnini: Genes (Basel). 12 [2](2021).

14) A.A. Duina, M.E. Miller and J.B. Keeney: Genetics. 197 [1](2014)33.

15) P. Polcic and Z. Machala: Int J Mol Sci. 22 [5](2021).

16) S. Ito, K. Sakai, V. Gamaleev, M. Ito, M. Hori, M. Kato and M. Shimizu: Biotechnol Biofuels. 13 (2020)18.

17) H. Hashizume, T. Ohta, M. Hori and M. Ito: Appl Phys Lett. 107 [9](2015).

18) R.N. Ma, H.Q. Feng, Y.D. Liang, Q. Zhang, Y. Tian, B. Su, J. Zhang and J. Fang: Journal of Physics D: Applied Physics. 46 [28](2013).

19) P. Polčic, L. Pakosová, P. Chovančíková and Z. Machala: Canadian Journal of Microbiology. 64 [6](2018)367.

20) S. Yoshimura, Y. Otsubo, A. Yamashita and K. Ishikawa: Jpn J Appl Phys. 60 [1](2021) [in English].

21) H. Takagi: Biosci Biotechnol Biochem. 85 [5](2021)1017.

22) Y. Liu, P. Cruz-Morales, A. Zargar, M.S. Belcher, B. Pang, E. Englund, Q. Dan, K. Yin and J.D. Keasling: Cell. 184 [6](2021)1636.

23) J.T. Cunha, P.O. Soares, S.L. Baptista, C.E. Costa and L. Domingues: Bioengineered. 11 [1](2020)883.

24) K.P. Eliodorio, G. Cunha, C. Muller, A.C. Lucaroni, R. Giudici, G.M. Walker, S.L. Alves, Jr. and T.O. Basso: Adv Appl Microbiol. 109 (2019)61.

25) N. Recek, R. Zhou, R. Zhou, V.S.J. Te'o, R.E. Speight, M. Mozetic, A. Vesel, U. Cvelbar, K. Bazaka and K.K. Ostrikov: Sci Rep. 8 [1](2018)8252.

26) R. Furuta, N. Kurake, K. Ishikawa, K. Takeda, H. Hashizume, H. Kondo, T. Ohta, M. Ito, M. Sekine and M. Hori: Phys Chem Chem Phys. 19 [21](2017)13438.

27) M. Iwasaki, H. Inui, Y. Matsudaira, H. Kano, N. Yoshida, M. Ito and M. Hori: Appl Phys Lett. 92 [8](2008)081503. [in English].

28) S.A. Mookerjee, D.G. Nicholls and M.D. Brand: Plos One. 11 [3](2016)e0152016.

29) S. Toyokuni: Pathology international. 66 [5](2016)245. [in eng].

30) J. Ding, X. Huang, L. Zhang, N. Zhao, D. Yang and K. Zhang: Appl Microbiol Biotechnol. 85 [2](2009)253.

31) M. Yoshida, S. Kato, S. Fukuda and S. Izawa: Appl Environ Microbiol. 87 [6](2021).

32) F. Carbone, S. Bruzzaniti, C. Fusco, A. Colamatteo, T. Micillo, P. De Candia, F. Bonacina, G.D. Norata and G. Matarese: Methods Mol Biol. 2285 (2021)319.

33) S. Lev, C. Li, D. Desmarini, D. Liuwantara, T.C. Sorrell, W.J. Hawthorne and J.T. Djordjevic: Pathogens. 9 [9](2020).

34) S. Sasaki, R. Honda, Y. Hokari, K. Takashima, M. Kanzaki and T. Kaneko: J. Phys. D: Appl. Phys. 49 [33](2016)334002.

35) S. Sasaki, Y. Hokari, A. Kumada, M. Kanzaki and T. Kaneko: Plasma Process Polym. 15 [1](2018) [in English].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る