リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genotoxicity of micro- and nano-particles of kaolin in human primary dermal keratinocytes and fibroblasts」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genotoxicity of micro- and nano-particles of kaolin in human primary dermal keratinocytes and fibroblasts

Kawanishi Masanobu Yoneda Reimi Totsuka Yukari Yagi Takashi 大阪府立大学

2020.05.12

概要

Introduction: Kaolin is a clay mineral with the chemical composition Al2Si2O5(OH)4. It is an important industrial material, and is also used as a white cosmetic pigment. We previously reported that fine particles of kaolin have genotoxic potency to Chinese hamster ovary CHO AA8 cells, and to the lungs of C57BL/6 J and ICR mice. In the present study, we evaluated the genotoxicity of different particle sizes of kaolin using primary normal human diploid epidermal keratinocytes and primary normal human diploid dermal fibroblasts, in addition to a CHO AA8 cell line.

Findings: After 6-h treatment with kaolin micro- and nano-particles of particle sizes 4.8 μm and 0.2 μm (200 nm), respectively, the frequencies of micronucleated cells increased in a dose-dependent manner. The frequency increased 3- to 4-fold by exposure to the particles at 200 μg/mL (i.e., 31.4 μg/cm2) in all cells tested. Two-way ANOVA revealed a significant main effect of particle size, and the nano-particles tended to have a higher potency of micronucleus (MN) induction. However, the cell type did not significantly affect the MN frequencies. In addition, one-hour treatment with the kaolin particles increased DNA damage in a dose-dependent manner in a comet assay. The %tail DNA was increased 8- to 20-fold by exposure to the particles at 200 μg/mL, for all cells tested. The kaolin nano-particles had higher DNA-damaging potency than the micro-particles. Furthermore, treatment with kaolin particles dose-dependently increased the production of reactive oxygen species (ROS) in all cells. Again, we observed that kaolin nano-particles induced more ROS than the micro-particles in all cells.

Conclusion: Kaolin particles demonstrated genotoxicity in primary normal human diploid epidermal keratinocytes and fibroblasts as well as in CHO AA8 cells. Although no significant difference was observed among these three types of cells, fine particles of kaolin tended to have higher genotoxic potency than coarse particles. Since studies on its genotoxicity to skin have been scarce, the findings of the present study could contribute to safety evaluations of kaolin particles when used as a white cosmetic pigment.

この論文で使われている画像

参考文献

1. Environmental Health Criteria 231. Bentonite, kaolin, and selected clay minerals. In: World Health Organization. Geneva: Switzerland; 2005.

2. Kato T, Toyooka T, Ibuki Y, Masuda S, Watanabe M, Totsuka Y. Effect of physicochemical character differences on the genotoxic potency of kaolin. Genes Environ. 2017;39:12.

3. Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N, Hiyoshi K, Ogo S, Kawanishi M, Yagi T, Ichinose T, Fukumori N, Watanabe M, Sugimura T, Wakabayashi K. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibere Toxicol. 2009;6:23.

4. Totsuka Y, Kato T, Masuda S, Ishino K, Matsumoto Y, Goto S, Kawanishi M, Yagi T, Wakabayashi K. In vitro and in vivo genotoxicity induced by fullerene (C60) and kaolin. Genes Environ. 2011;1:14–20.

5. Printing processes and printing inks, carbon black and some nitro compounds. IARC Monogr Eval Carcinog Risks Hum. 1996:65. ISBN-13 (PDF)978-92-832-1565-3.

6. Some nanomaterials and some fibres. IARC Monogr Eval Carcinog Risks Hum. 2018:111. ISBN-13 (PDF) 978-92-832-0177-9.

7. Ben-David U, Siranosian B, Ha G, Tang H, Oren Y, Hinohara K, Strathdee CA, Dempster J, Lyons NJ, Burns R, Nag A, Kugener G, Cimini B, Tsvetkov P, Maruvka YE, O'Rourke R, Garrity A, Tubelli AA, Bandopadhayay P, Tsherniak A, Vazquez F, Wong B, Birger C, Ghandi M, Thorner AR, Bittker JA, Meyerson M, Getz G, Beroukhim R, Golub TR. Genetic and transcriptional evolution alters cancer cell line drug response. Nature. 2018;560(7718):325–30.

8. Yagi T. Investigation of gonotoxic mechanism of inorganic nanomaterials for cosmetics. Ann Rep Cosmetol. 2015;23:123–9 in Japanese.

9. Kawanishi M, Ogo S, Ikemoto M, Totsuka Y, Ishino K, Wakabayashi K, Yagi T. Genotoxicity and reactive oxygen species production induced by magnetite nanoparticles in mammalian cells. J Toxicol Sci. 2013;38(3):503–11.

10. Upadhyay D, Panduri V, Ghio A, Kamp DW. Particulate matter induces alveolar epithelial cell DNA damage and apoptosis: role of free radicals and the mitochondria. Am J Respir Cell Mol Biol. 2003;29:180–7.

11. Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V. Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol. 2005;2:10.

12. Governa M, Valentino M, Visona I, Monaco F, Amati M, Scancarello G. Scan- setti G In vitro biological effects of clay minerals advised as substitutes for asbestos. Cell Biol Toxicol. 1995;11:237–49.

13. Lin W, Huang Y, Zhou X, Liu XD, Ma Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol. 2006;217:252–9.

14. Suzuki H, Toyooka T, Ibuki Y. Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Env. Sci. Tech. 2007;41(8):3018–24.

15. Gao N, Keane MJ, Ong T, Wallace WE. Effects of simulated pulmonary surfactant on the cytotoxicity and DNA-damaging activity of respirable quartz and kaolin. J Toxicol Environ Health A. 2000;60(3):153–67.

16. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 2007;10(Suppl 1):1–269.

17. Maisanaba S, Pichardo S, Puerto M, Gutierrez-Praena D, Camean AM, Jos A. Toxicological evaluation of clay minerals and derived nanocomposites: a review. Environ Res. 2015;138:233–54.

参考文献をもっと見る