リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pluripotency state of mouse ES cells determines their contribution to self-organized layer formation by mesh closure on microstructured adhesion-limiting substrates」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pluripotency state of mouse ES cells determines their contribution to self-organized layer formation by mesh closure on microstructured adhesion-limiting substrates

Ando, Yuta Okeyo, Kennedy Omondi Adachi, Taiji 京都大学 DOI:10.1016/j.bbrc.2021.12.066

2022.01.29

概要

Assembly of pluripotent stem cells to initiate self-organized tissue formation on engineered scaffolds is an important process in stem cell engineering. Pluripotent stem cells are known to exist in diverse pluripotency states, with heterogeneous subpopulations exhibiting differential gene expression levels, but how such diverse pluripotency states orchestrate tissue formation is still an unrevealed question. In this study, using microstructured adhesion-limiting substrates, we aimed to clarify the contribution to self-organized layer formation by mouse embryonic stem cells in different pluripotency states: ground and naïve state. We found that while ground state cells as well as sorted REX1-high expression cells formed discontinuous cell layers with limited lateral spread, naïve state cells could successfully self-organize to form a continuous layer by progressive mesh closure within 3 days. Using sequential immunofluorescence microscopy to examine the mesh closure process, we found that KRT8+ cells were particularly localized around unfilled holes, occasionally bridging the holes in a manner suggestive of their role in the closure process. These results highlight that compared with ground state cells, naïve state cells possess a higher capability to contribute to self-organized layer formation by mesh closure. Thus, this study provides insights with implications for the application of stem cells in scaffold-based tissue engineering.

この論文で使われている画像

参考文献

[1] J. Fu, A. Warmflash, M.P. Lutolf, Stem-cell-based embryo models for fundamental research and translation, Nat. Mater. 20 (2021) 132e144, https://

doi.org/10.1038/s41563-020-00829-9.

[2] R. Guo, M. Morimatsu, T. Feng, F. Lan, D. Chang, F. Wan, Y. Ling, Stem cellderived cell sheet transplantation for heart tissue repair in myocardial

[24]

102

infarction, Stem Cell Res. Ther. 11 (2020) 19, https://doi.org/10.1186/s13287019-1536-y.

T. Takebe, J.M. Wells, Organoids by design, Science 364 (2019) 956e959,

https://doi.org/10.1126/science.aaw7567.

L.M. Murrow, R.J. Weber, Z.J. Gartner, Dissecting the stem cell niche with

organoid models: an engineering-based approach, Development 144 (2017)

998e1007, https://doi.org/10.1242/dev.140905.

H. Niwa, K. Ogawa, D. Shimosato, K. Adachi, A parallel circuit of LIF signalling

pathways maintains pluripotency of mouse ES cells, Nature 460 (2009)

118e122, https://doi.org/10.1038/nature08113.

Y. Toyooka, D. Shimosato, K. Murakami, K. Takahashi, H. Niwa, Identification

and characterization of subpopulations in undifferentiated ES cell culture,

Development 135 (2008) 909e918, https://doi.org/10.1242/dev.017400.

M.G. Carter, C.A. Stagg, G. Falco, T. Yoshikawa, U.C. Bassey, K. Aiba,

L.V. Sharova, N. Shaik, M.S.H. Ko, An in situ hybridization-based screen for

heterogeneously expressed genes in mouse ES cells, Gene Expr. Patterns 8

(2008) 181e198, https://doi.org/10.1016/j.gep.2007.10.009.

Q.L. Ying, J. Wray, J. Nichols, L. Batlle-Morera, B. Doble, J. Woodgett, P. Cohen,

A. Smith, The ground state of embryonic stem cell self-renewal, Nature 453

(2008) 519e523, https://doi.org/10.1038/nature06968.

G. Guo, L. Pinello, X. Han, S. Lai, L. Shen, T.W. Lin, K. Zou, G.C. Yuan, S.H. Orkin,

Serum-based culture conditions provoke gene expression variability in mouse

embryonic stem cells as revealed by single-cell analysis, Cell Rep. 14 (2016)

956e965, https://doi.org/10.1016/j.celrep.2015.12.089.

A.A. Kolodziejczyk, J.K. Kim, J.C.H. Tsang, T. Ilicic, J. Henriksson, K.N. Natarajan,

A.C. Tuck, X. Gao, M. Bühler, P. Liu, J.C. Marioni, S.A. Teichmann, Single cell

RNA-sequencing of pluripotent states unlocks modular transcriptional variation, Cell Stem Cell 17 (2015) 471e485, https://doi.org/10.1016/

j.stem.2015.09.011.

D. Papatsenko, H. Darr, I.V. Kulakovskiy, A. Waghray, V.J. Makeev,

B.D. MacArthur, I.R. Lemischka, Single-cell analyses of ESCs reveal alternative

pluripotent cell states and molecular mechanisms that control self-renewal,

Stem

Cell

Rep

(2015)

207e220,

https://doi.org/10.1016/

j.stemcr.2015.07.004.

R.M. Kumar, P. Cahan, A.K. Shalek, R. Satija, A. DaleyKeyser, H. Li, J. Zhang,

K. Pardee, D. Gennert, J.J. Trombetta, T.C. Ferrante, A. Regev, G.Q. Daley,

J.J. Collins, Deconstructing transcriptional heterogeneity in pluripotent stem

cells, Nature 516 (2014) 56e61, https://doi.org/10.1038/nature13920.

H. Marks, T. Kalkan, R. Menafra, S. Denissov, K. Jones, H. Hofemeister,

J. Nichols, A. Kranz, A.F. Stewart, A. Smith, H.G. Stunnenberg, The transcriptional and epigenomic foundations of ground state pluripotency, Cell 149

(2012) 590e604, https://doi.org/10.1016/j.cell.2012.03.026.

€ter, Making lineage decisions with

C.S. Simon, A.K. Hadjantonakis, C. Schro

biological noise: lessons from the early mouse embryo, WIREs Dev. Biol. 7

(2018) e319, https://doi.org/10.1002/wdev.319.

Y. Ando, K.O. Okeyo, T. Adachi, Modulation of adhesion microenvironment

using mesh substrates triggers self-organization and primordial germ cell-like

differentiation in mouse ES cells, APL Bioeng 3 (2019), 016102, https://doi.org/

10.1063/1.5072761.

K.O. Okeyo, O. Kurosawa, H. Oana, H. Kotera, M. Washizu, Minimization of

cell-substrate interaction using suspended microstructured meshes initiates

cell sheet formation by self-assembly organization, Biomed, Phys. Eng. Express 2 (2016), 065019, https://doi.org/10.1088/2057-1976/2/6/065019.

K.O. Okeyo, O. Kurosawa, S. Yamazaki, H. Oana, H. Kotera, H. Nakauchi,

M. Washizu, Cell adhesion minimization by a novel mesh culture method

mechanically directs trophoblast differentiation and self-assembly organization of human pluripotent stem cells, Tissue Eng. C Methods 21 (2015)

1105e1115, https://doi.org/10.1089/ten.tec.2015.0038.

J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,

S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.Y. Tinevez, D.J. White,

V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Fiji: an open-source

platform for biological-image analysis, Nat. Methods 9 (2012) 676e682,

https://doi.org/10.1038/nmeth.2019.

N. Schwarz, R. Windoffer, T.M. Magin, R.E. Leube, Dissection of keratin

network formation, turnover and reorganization in living murine embryos,

Sci. Rep. 5 (2015) 9007, https://doi.org/10.1038/srep09007.

Y. Ando, K.O. Okeyo, J. Sunaga, T. Adachi, Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on

designed mesh substrates, Stem Cell Res. 53 (2021) 102352, https://doi.org/

10.1016/j.scr.2021.102352.

P.A. Coulombe, P. Wong, Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds, Nat. Cell Biol. 8 (2004) 699e706, https://

doi.org/10.1038/ncb0804-699.

H.Y.G. Lim, Y.D. Alvarez, M. Gasnier, Y. Wang, P. Tetlak, S. Bissiere, H. Wang,

M. Biro, N. Plachta, Keratins are asymmetrically inherited fate determinants in

the mammalian embryo, Nature 585 (2020) 404e409, https://doi.org/

10.1038/s41586-020-2647-4.

H.Y.G. Lim, N. Plachta, Cytoskeletal control of early mammalian development,

Nat. Rev. Mol. Cell Biol. 22 (2021) 548e562, https://doi.org/10.1038/s41580021-00363-9.

Q.L. Ying, A. Smith, The art of capturing pluripotency: creating the right culture, Stem Cell Rep 8 (2017) 1457e1464, https://doi.org/10.1016/

j.stemcr.2017.05.020.

...

参考文献をもっと見る