リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Anatomy of active volcanic edifice at the Kusatsu–Shirane volcano, Japan, by magnetotellurics: hydrothermal implications for volcanic unrests」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Anatomy of active volcanic edifice at the Kusatsu–Shirane volcano, Japan, by magnetotellurics: hydrothermal implications for volcanic unrests

TSENG Kuo-Hsuan 小川 康雄 氏原 直人 本藏 義守 寺田 暁彦 臼井 嘉哉 神田 径 Kuo Hsuan Tseng Yasuo Ogawa Naoto Ujihara Yoshimori Honkura Akihiko Terada Yoshiya Usui Wataru Kanda 東京工業大学 DOI:https://doi.org/10.1186/s40623-020-01283-2

2020.10.23

概要

We aimed to perform three-dimensional imaging of the underlying geothermal system to a depth of 2 km using magnetotellurics (MT) at around the Yugama crater, the Kusatsu–Shirane Volcano, Japan, which is known to have frequent phreatic eruptions. We deployed 91 MT sites focusing around the peak area of 2 km × 2 km with typical spacings of 200 m. The full tensor impedances and the magnetic transfer functions were inverted, using an unstruc-tured tetrahedral finite element code to include the topographic effect. The final model showed (1) low-permeability bell-shaped clay cap (C1) as the near-surface conductor, (2) brine reservoir as a deep conductor (C3) at a depth of 1.5 km from the surface, and (3) a vertical conductor (C2) connecting the deep conductor to the clay cap which implies an established fluid path. The columnar high-seismicity distribution to the east of the C2 conductor implies that the flushed vapor and magmatic gas was released from the brine reservoir by breaking the silica cap at the brit- tle–ductile transition. The past magnetization/demagnetization sources and the inflation source of the 2014 unrest are located just below the clay cap, consistent with the clay capped geothermal model underlain by brine reservoir. The resistivity model showed the architecture of the magmatic–hydrothermal system, which can explain the episodic volcanic unrest.

この論文で使われている画像

参考文献

Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: Delineation by electric self-poten- tial and magnetotellurics. J Geophys Res Solid Earth. https://doi. org/10.1029/2008JB005910

Afanasyev A, Blundy J, Melnik O, Sparks S (2018) Formation of magmatic brine lenses via focussed fluid-flow beneath volcanoes. Earth Planet Sci Lett 486:119–128. https://doi.org/10.1016/j.epsl.2018.01.013

Blundy J, Mavrogenes J, Tattitch B, Sparks S, Gilmer A (2015) Generation of porphyry copper deposits by gas–brine reaction in volcanic arcs. Nature Geosci 8:235–240. https://doi.org/10.1038/ngeo2351

Caldwell TG, Bibby HM, Brown C (2004) The magnetotelluric phase ten- sor. Geophys J Int 158:457–469. https://doi.org/10.1111/j.1365- 246X.2004.02281.x

Eberl D (1978) Reaction series for dioctahedral smectites. Clays Clay Miner 26:327–340. https://doi.org/10.1346/CCMN.1978.0260503

Fournier RO (1999) Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic–epithermal environment. Econ Geol 94:1193–1211. https://doi.org/10.2113/gsecongeo.94.8.1193

Heise W, Caldwell TG, Bibby HM, Bannister SC (2008) Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys J Int 173:740–750. https:// doi.org/10.1111/j.1365-246X.2008.03737.x

Herd DG (1986) The 1985 Ruiz Volcano disaster. Eos Trans Am Geophys Union 67:457. https://doi.org/10.1029/EO067i019p00457-03

Hutnak M, Hurwitz S, Ingebritsen SE, Hsieh PA (2009) Numerical models of cal- dera deformation: effects of multiphase and multicomponent hydrother- mal fluid flow. J Geophys Res 114:B04411. https://doi.org/10.1029/2008J B006151

Ichihara H, Mogi T, Tanimoto K, Yamaya Y, Hashimoto T, Uyeshima M, Ogawa Y (2016) Crustal structure and fluid distribution beneath the southern part of the Hidaka collision zone revealed by 3-D electrical resistiv-ity modeling. Geochem Geophys Geosyst 17:1480–1491. https://doi. org/10.1002/2015GC006222

Ichihara H, Sakanaka S, Mishina M, Uyeshima M, Nishitani T, Ogawa Y, Yamaya Y, Mogi T, Amita K, Miura T (2014) A 3-D electrical resistivity model beneath the focal zone of the 2008 Iwate-Miyagi Nairiku earthquake (M 7.2). Earth Planets Space 66:50. https://doi.org/10.1186/1880-5981-66-50

Inoue A, Utada M, Wakita K (1992) Smectite-to-illite conversion in natural hydrothermal systems. Appl Clay Sci 7:131–145. https://doi. org/10.1016/0169-1317(92)90035-L

Kanda W, Utsugi M, Takakura S, Inoue H (2019) Hydrothermal system of the active crater of Aso volcano (Japan) inferred from a three-dimensional resistivity structure model. Earth Planets Space 71:37. https://doi. org/10.1186/s40623-019-1017-7

Kaneko T, Maeno F, Nakada S (2016) 2014 Mount Ontake eruption: character- istics of the phreatic eruption as inferred from aerial observations. Earth Planets Space 68:72. https://doi.org/10.1186/s40623-016-0452-y

Kobayashi T, Morishita Y, Munekane H (2018) First detection of precursory ground inflation of a small phreatic eruption by InSAR. Earth Planet Sci Lett 491:244–254. https://doi.org/10.1016/j.epsl.2018.03.041

Martí A, Queralt P, Marcuello A, Ledo J, Rodríguez-Escudero E, Martínez-Díaz JJ, Campanyà J, Meqbel N (2020) Magnetotelluric characterization of the Alhama de Murcia Fault (Eastern Betics, Spain) and study of magnetotelluric interstation impedance inversion. Earth Planets Space 72:16. https://doi.org/10.1186/s40623-020-1143-2

Matsunaga Y, Kanda W, Takakura S, Koyama T, Saito Z, Seki K, Suzuki A, Kishita T, Kinoshita Y, Ogawa Y (2020) Magmatic hydrothermal system inferred from the resistivity structure of Kusatsu–Shirane Volcano. J Volcanol Geotherm Res 390:106742. https://doi.org/10.1016/j.jvolg eores.2019.106742

Nakano M, Kumagai H, Chouet BA (2003) Source mechanism of long-period events at Kusatsu–Shirane Volcano, Japan, inferred from waveform inversion of the effective excitation functions. J Volcanol Geotherm Res 122:149–164. https://doi.org/10.1016/S0377-0273(02)00499-7

Nurhasan, Ogawa Y, Ujihara N, Tank SB, Honkura Y, Onizawa S, Mori T, Makino M (2006) Two electrical conductors beneath Kusatsu–Shirane volcano, Japan, imaged by audiomagnetotellurics, and their implications for the hydrothermal system. Earth Planets Space 58:1053–1059. https://doi. org/10.1186/BF03352610

Ogawa Y, Mishina M, Goto T, Satoh H, Oshiman N, Kasaya T, Takahashi Y, Nishitani T, Sakanaka S, Uyeshima M, Takahashi Y, Honkura Y, Matsushima M (2001) Magnetotelluric imaging of fluids in intraplate earthquake zones, NE Japan Back Arc. Geophys Res Lett 28:3741–3744. https://doi.org/10.1029/2001GL013269

Ogawa Y, Ichiki M, Kanda W, Mishina M, Asamori K (2014) Three-dimensional magnetotelluric imaging of crustal fluids and seismicity around Naruko volcano NE Japan. Earth Planets Space 66:158. https://doi.org/10.1186/ s40623-014-0158-y

Ohba T, Yaguchi M, Nishino K, Numanami N, Tsunogai U, Ito M, Shingubara R (2019) Time variation in the chemical and isotopic composition of fumarolic gasses at Kusatsu–Shirane Volcano, Japan. Front Earth Sci. https://doi.org/10.3389/feart.2019.00249

Piña-Varas P, Ledo J, Queralt P, Marcuello A, Perez N (2018) On the detect- ability of Teide volcano magma chambers (Tenerife, Canary Islands) with magnetotelluric data. Earth Planets Space 70:14. https://doi. org/10.1186/s40623-018-0783-y

Saishu H, Okamoto A, Tsuchiya N (2014) The significance of silica precipi- tation on the formation of the permeable–impermeable boundary within Earth’s crust. Terra Nova 26:253–259. https://doi.org/10.1111/ ter.12093

Sano Y, Hirabayashi J-I, Oba T, Gamo T (1994) Carbon and helium isotopic ratios at Kusatsu–Shirane Volcano, Japan. Appl Geochem 9:371–377. https://doi. org/10.1016/0883-2927(94)90059-0

Seki K, Kanda W, Ogawa Y, Tanbo T, Kobayashi T, Hino Y, Hase H (2015) Imag- ing the hydrothermal system beneath the Jigokudani valley, Tateyama volcano, Japan: implications for structures controlling repeated phreatic eruptions from an audio-frequency magnetotelluric survey. Earth Planets Space 67:6. https://doi.org/10.1186/s40623-014-0169-8

Stix J, de Moor JM (2018) Understanding and forecasting phreatic eruptions driven by magmatic degassing. Earth Planets Space 70:83. https://doi. org/10.1186/s40623-018-0855-z

Takahashi K, Fujii I (2014) Long-term thermal activity revealed by magnetic measurements at Kusatsu–Shirane volcano, Japan. J Volcanol Geotherm Res 285:180–194. https://doi.org/10.1016/j.jvolgeores.2014.08.014

Tazieff H (1989) Mechanisms of the Nyos carbon dioxide disaster and of so- called phreatic steam eruptions. J Volcanol Geotherm Res 39:109–116. https://doi.org/10.1016/0377-0273(89)90051-6

Terada A (2018) Kusatsu–Shirane volcano as a site of phreatic eruptions. J Geol Soc Japan 124:251–270. https://doi.org/10.5575/geosoc.2017.0060

Terada A, Morita Y, Hashimoto T, Mori T, Ohba T, Yaguchi M, Kanda W (2018) Water sampling using a drone at Yugama crater lake, Kusatsu–Shirane volcano, Japan. Earth Planets Space 70:64. https://doi.org/10.1186/s4062 3-018-0835-3

Terada A, Ohkura T, Kanda W, Ogawa Y (2015) Ground deformation caused by an accumulation of hydrothermal water beneath hot crater lake at Kusatsu– Shirane volcano. In: Abstracts of Japan geoscience union meet- ing 2015, Makuhari, Chiba, Japan, 24-28 May 2015.

Tsukamoto K, Aizawa K, Chiba K, Kanda W, Uyeshima M, Koyama T, Utsugi M, Seki K, Kishita T (2018) Three-dimensional resistivity structure of Iwo-Yama Volcano, Kirishima Volcanic Complex, Japan: relationship to shallow seismicity, surface uplift, and a small phreatic eruption. Geophys Res Lett. https://doi.org/10.1029/2018GL080202

Ussher G, Harvey C, Johnstone R, Anderson E (2000) Understanding the resistivities observed in geothermal systems. In: Proceedings world geothermal congress, Kyushu-Tohoku, Japan, 28 May–10 June 2000, pp 1915–1920

Usui Y (2015) 3-D inversion of magnetotelluric data using unstructured tetra- hedral elements: applicability to data affected by topography. Geophys J Int 202:828–849. https://doi.org/10.1093/gji/ggv186

Usui Y, Ogawa Y, Aizawa K, Kanda W, Hashimoto T, Koyama T, Yamaya Y, Kagiyama T (2017) Three-dimensional resistivity structure of Asama Volcano revealed by data-space magnetotelluric inversion using unstruc- tured tetrahedral elements. Geophys J Int 208:1359–1372. https://doi. org/10.1093/gji/ggw459

Vidal J, Patrier P, Genter A, Beaufort D, Dezayes C, Glaas C, Lerouge C, Sanjuan B (2018) Clay minerals related to the circulation of geothermal fluids in boreholes at Rittershoffen (Alsace, France). J Volcanol Geotherm Res 349:192–204. https://doi.org/10.1016/j.jvolgeores.2017.10.019

Wannamaker PE, Caldwell TG, Jiracek GR, Maris V, Hill GJ, Ogawa Y, Bibby HM, Bennie SL, Heise W (2009) Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand. Nature 460:733–736. https://doi.org/10.1038/nature08204

Weatherley D, Henley R (2013) Flash vaporization during earthquakes evidenced by gold deposits. Nature Geosci 6:294–298. https://doi. org/10.1038/ngeo1759

Yamaya Y, Alanis PKB, Takeuchi A, Cordon JM, Mogi T, Hashimoto T, Sasai Y, Nagao T (2013) A large hydrothermal reservoir beneath Taal Volcano (Phil- ippines) revealed by magnetotelluric resistivity survey: 2D resistivity mod- eling. Bull Volcanol 75:729. https://doi.org/10.1007/s00445-013-0729-y

Yoshimura R, Ogawa Y, Yukutake Y, Kanda W, Komori S, Hase H, Goto T, Honda R, Harada M, Yamazaki T, Kamo M, Kawasaki S, Higa T, Suzuki T, Yasuda Y, Tani M, Usui Y (2018) Resistivity characterization of Hakone volcano, Cen- tral Japan, by three-dimensional magnetotelluric inversion. Earth Planets Space 70:66. https://doi.org/10.1186/s40623-018-0848-y

Yukutake Y, Ito H, Honda R, Harada M, Tanada T, Yoshida A (2011) Fluid-induced swarm earthquake sequence revealed by precisely determined hypo- centers and focal mechanisms in the 2009 activity at Hakone volcano, Japan. J Geophys Res 116:B04308. https://doi.org/10.1029/2010JB00803

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る