リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on genetic polymorphism and essential oil composition of Asian Curcuma species and crude drugs for standardization」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on genetic polymorphism and essential oil composition of Asian Curcuma species and crude drugs for standardization

劉 群棟 富山大学

2021.12.15

概要


論 文 題 目







Study on genetic polymorphism and essential oil composition of Asian
Curcuma species and crude drugs for standardization

課程・専攻名:


博士後期課程・薬科学専攻

名: 劉 群棟

Introduction
Genus Curcuma (Zingiberaceae) comprises approximately 120 species and approximately 30
species’ rhizomes have been used as traditional medicines, spices, dyes and cosmetics. Recently, with
the increasing popularity of foods with health claims and so-called health food in Japan and other
countries, the Curcuma rhizomes are frequently used worldwide. However, quality assessment
including correct identification has not been conducted. Because of the wide distribution and
morphological similarities of Curcuma species, classification of some species is debated and
nomenclature is inconsistent among countries, especially for C. aromatica and C. zedoaria. This
situation leads to confusion in the use of Curcuma crude drugs. The medicinal properties of C. longa
are mainly attributed to its content of curcuminoids which have been reported to possess antiinflammatory, anticancer activities, etc. However, other Curcuma drugs that contain no or few
curcuminoids but characteristic essential oil (EO) also have pharmacological effects, such as antiinflammatory, antioxidant and antiobesity activities, etc. Among literatures, inconsistent reports on
EO compositions of the same species were not rare, and such inconsistence might be attributed to
misidentification of botanic origin, difference of cultivation condition or processing method.
Therefore, comparative data on the EO compositions from Curcuma species which are identified
correctly and processed with same method is necessary.
In our laboratory, molecular analysis based on the trnK intron sequences of chloroplast DNA
was performed to identify Chinese and Japanese Curcuma crude drugs, however the sequence
comparison of this region was not enough to determine the botanical origin of Asian ones. Recently,
the intron length polymorphism (ILP) markers in two intron regions of genes encoding diketide-CoA
synthase (DCS) and one intron region of genes encoding curcumin synthase (CURS) were found to
have potential for discrimination of Chinese and Japanese Curcuma plants and crude drugs.
In this study, to elucidate molecular markers for discriminating Curcuma species in Asia, and to
solve the confusion on the botanical origin of Curcuma crude drugs, molecular analysis based on ILP
markers as well as trnK intron sequences was conducted using a number of Curcuma specimens and
crude drug samples from nine countries. Then, subcloning coupled with sequencing analysis was also
performed on DCS intron Ⅰ and CURS intron regions of representative species. Furthermore, to find
out the species-specific EO compositions, GC-MS analysis was conducted on 12 species.

1.

Molecular analyses based on ILP markers in DCS and CURS genes and trnK intron
sequences [1]

ILP patterns and trnK intron sequences were determined for 59 plant specimens and 42 crude
drug samples of 13 Curcuma species obtained from Asian countries. These plant specimens were
collected from several medicinal plant gardens in Japan; most of them were introduced from China,
Thailand, Indonesia, India, Malaysia and Nepal; all of them were identified based on detailed
observation and comparison of their morphology with the taxonomic literatures. The ILP patterns of
the respective species revealed high consistency within the same species in C. aromatica (group JA),
C. zedoaria (Ze), C. phaeocaulis (P), C. aeruginosa (Ae), C. wenyujin (W) and C. zanthorrhiza (Za),
but showed intraspecies polymorphism in C. longa (L), C. kwangsiensis (K), C. amada (A/M), C.
mangga (A/M) and C. comosa (C). The similarities of the ILP patterns enabled them to be divided
into the corresponding groups in the Neighbor-Joining tree (Fig. 1). Groups Pe (C. petiolata) and C
formed a clade, separated from the large clade. Group L formed one subclade and was further divided
into three subgroups and this grouping was highly consistent with the geographical origins of the
included samples; thus, they were tentatively assigned as China-Japan (L1), Thailand (L2) and IndiaIndonesia (L3) groups. Another subclade comprising the other species was further divided into two
branches: one composed of groups JA, Ze, Ae, P, W and K; and the other composed of Za and A/M.
Based on the combined data of the ILP markers and the trnK intron sequences, the botanical origins
of some crude drugs from Thailand and India were correctly determined, and some crude drug
samples from India were clarified to have hybrid origin. Moreover, morphological and molecular data
showed that C. aromatica and C. zedoaria cultivated in Japan had close relations with C. aromatica
from China and Thailand, and C. zedoaria from Indonesia and India, respectively.
Subcloning and sequencing analysis for DCS intron Ⅰ and CURS intron regions [2]
Six plant specimens from five Curcuma species, including C. longa, C. zedoaria, C. phaeocaulis,
C. aromatica and C. zanthorrhiza which showed distinct ILP patterns were subjected to subcloning
coupled with sequencing analysis for the DCS intron Ⅰ and CURS intron regions. More than 30
sequences of each region from each specimen were grouped into genes DCS1, DCS2 or CURS1-3
2.

and subsequently the sequences of the same genes were compared. Sequences belonging to the same
gene showed inter-species similarity, and thus these intron sequences were less informative within
each single gene region. The determined sequences from each specimen showed 3-5 kinds of
sequence lengths in DCS intron I region, and 5-7 kinds of sequence lengths in CURS intron region.
These were in accordance with the fragment numbers and lengths in the corresponding ILP patterns,
explaining well the origin of ILP pattern of Curcuma species.
3.

Essential oil composition analyzed by headspace solid-phase microextraction coupled with
gas chromatography-mass spectrometry (HS-SPME-GC-MS) [3]
The EO compositions of genetically identified 47 plant specimens belonging to 11 Curcuma

species as well as 20 crude drug samples were analyzed by HS-SPME-GC-MS. Plant specimens of
the same species showed similar EO patterns, even those were introduced from different areas. Based

on the similarity of EO patterns, all the plant specimens and C. comosa crude drug samples were
separated into eight main groups: L; Ze-P-Ae; Za; JA-W; K; Am(C. amada)-M(C. mangga); Pe; C.
From all the plant rhizomes and crude drug samples, 54 major sesquiterpene and monoterpene
compounds with relative higher content ( > 1%) were identified. The eight groups contained
characteristic sesquiterpenes belonging to bisabolane type (L); curzerene, germacrane types (Ze-PAe); cedrane, bisabolane types (Za); germacrane, curzerene types (JA-W); curzerene, germacrane
types (K); caryophyllane type (Am-M; Pe); santalene, bisabolane types (C), respectively. Most of
the major compounds of group L, Ze, P, Ae and Za plant specimens were detected in their respective
crude drug samples correspondently; while some compounds, such as turmerone and α-cedrene or
curcumenol, dramatically decreased or increased in crude drug samples, which was probably due to
the processing or long-time storage. The genetically-deducing hybrid sample “Khamin oi” from
Thailand contained major compounds similar to C. longa and a C. comosa sample. OPLS-DA clearly
differed the groups L, Za and JA from the others with characteristic compounds turmerone,
xanthorrhizol and neocurdione, respectively. Groups Ze, P and Ae showed similar EO compositions
with common major compounds curzerenone and 4,5-epoxygermacrone (Fig. 3).
Conclusion
The ILP patterns successfully discriminated 13 Curcuma species and served as useful genetic
marker to identify the related crude drug samples. Based on the ILP markers and the trnK intron
sequences, the botanical origins of some confused crude drug samples in Asian countries were
correctly determined and the sources of C. aromatica and C. zedoaria cultivated in Japan were
inferred. The determined sequences of DCS intron Ⅰ and CURS intron regions well explained the
origin of ILP patterns. The comparative data of EO composition from 11 Curcuma specimens
revealed the major compounds in each species and several groups possessing chemical similarities
were detected. In summary, molecular method based on the ILP markers in DCS and CURS genes
and trnK intron sequences, as well as EO composition analysis were demonstrated to be useful for
taxonomic arrangement of Asian Curcuma species and standardization of Curcuma crude drugs.
References
1. Liu Q, Zhu S, Hayashi S, Iida O, Takano A, Miyake K, Sukrong S, Agil M, Balachandran I,
Nakamura N, Kawahara N, Komatsu K (2021) Discrimination of Curcuma species from Asia
using intron length polymorphism markers in genes encoding diketide-CoA synthase and
curcumin synthase. J Nat Med, published online, https://doi.org/10.1007/s11418-021-01558-2
2. Liu Q, Zhu S, Hayashi S, Anjiki N, Takano A, Kawahara N, Komatsu K (2021) Genetic analysis
of Curcuma species from Asia based on intron regions of genes encoding diketide-CoA synthase
and curcumin synthase. J Nat Med, published online, https://doi.org/10.1007/s11418-021-01563
-5
3.

Liu Q, Komatsu K, Toume K, Zhu S, Hayashi S, Anjiki N, Kawahara N, Takano A, Miyake K,
Nakamura N. Essential oil composition of Curcuma species and drugs from Asia analyzed by
headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry
(HS-SPME-GC-MS). (in preparation)

Fig. 1 Dendrogram constructed by neighbor–joining method based on similarity of the ILP patterns.
The scale under the tree indicates branch length.

Fig 2. Representative GC-MS chromatograms of Curcuma rhizomes
A, C. longa (L1), Q32; B, C. longa (L2), 94009; C, C. phaeocaulis (P), Q38; D, C. aeruginosa (Ae), Q41; E,
C. zedoaria (Ze), 91014; F, C. zanthorrhiza (Za), Q48; G, C. aromatica (JA), 01005; H, C. wenyujin (W),
Q49; I, C. amada (Am), 00591; J, C. mangga (M), 00959; K, C. kwangsiensis (K), Q63; L, C. petiolata (Pe),
94008. 2, β-pinene; 3, β-myrcene; 5, eucalyptol; 9, δ-elemene; 10, camphor; 14, β-elemene; 15, caryophyllene;
21, germacrene D; 23, zingiberene; 26, α-cedrene; 28, β-sesquiphellandrene; 29, aR-curcumene; 30, γelemene; 32, curzerene; 36, β-elemenone; 39, turmerone; 40, curzerenone; 42, germacrone; 43, β-turmerone;
44, aR-turmerone; 46, neocurdione; 52, 4,5-epoxygermacrone; 53, curcumenone; 54, xanthorrhizol.

Fig 3. OPLS-DA of EOs from Curcuma rhizomes
A, Score plot of all the plant specimens of 11 species; B, Loading plot, showing compounds contributed to the
discrimination; C, Score plot of the specimens of C. kwangsiensis, C. amada, C. mangga, C. zedoaria, C.
phaeocaulis and C. aeruginosa; D, Loading plot, showing compounds contributed to the discrimination.

この論文で使われている画像

参考文献

1. Liu Q, Zhu S, Hayashi S, Iida O, Takano A, Miyake K, Sukrong S, Agil M, Balachandran I,

Nakamura N, Kawahara N, Komatsu K (2021) Discrimination of Curcuma species from Asia

using intron length polymorphism markers in genes encoding diketide-CoA synthase and

curcumin synthase. J Nat Med, published online, https://doi.org/10.1007/s11418-021-01558-2

2. Liu Q, Zhu S, Hayashi S, Anjiki N, Takano A, Kawahara N, Komatsu K (2021) Genetic analysis

of Curcuma species from Asia based on intron regions of genes encoding diketide-CoA synthase

and curcumin synthase. J Nat Med, published online, https://doi.org/10.1007/s11418-021-015635

3.

Liu Q, Komatsu K, Toume K, Zhu S, Hayashi S, Anjiki N, Kawahara N, Takano A, Miyake K,

Nakamura N. Essential oil composition of Curcuma species and drugs from Asia analyzed by

headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry

(HS-SPME-GC-MS). (in preparation)

Fig. 1 Dendrogram constructed by neighbor–joining method based on similarity of the ILP patterns.

The scale under the tree indicates branch length.

Fig 2. Representative GC-MS chromatograms of Curcuma rhizomes

A, C. longa (L1), Q32; B, C. longa (L2), 94009; C, C. phaeocaulis (P), Q38; D, C. aeruginosa (Ae), Q41; E,

C. zedoaria (Ze), 91014; F, C. zanthorrhiza (Za), Q48; G, C. aromatica (JA), 01005; H, C. wenyujin (W),

Q49; I, C. amada (Am), 00591; J, C. mangga (M), 00959; K, C. kwangsiensis (K), Q63; L, C. petiolata (Pe),

94008. 2, β-pinene; 3, β-myrcene; 5, eucalyptol; 9, δ-elemene; 10, camphor; 14, β-elemene; 15, caryophyllene;

21, germacrene D; 23, zingiberene; 26, α-cedrene; 28, β-sesquiphellandrene; 29, aR-curcumene; 30, γelemene; 32, curzerene; 36, β-elemenone; 39, turmerone; 40, curzerenone; 42, germacrone; 43, β-turmerone;

44, aR-turmerone; 46, neocurdione; 52, 4,5-epoxygermacrone; 53, curcumenone; 54, xanthorrhizol.

Fig 3. OPLS-DA of EOs from Curcuma rhizomes

A, Score plot of all the plant specimens of 11 species; B, Loading plot, showing compounds contributed to the

discrimination; C, Score plot of the specimens of C. kwangsiensis, C. amada, C. mangga, C. zedoaria, C.

phaeocaulis and C. aeruginosa; D, Loading plot, showing compounds contributed to the discrimination.

様式7

学位論文審査の要旨

富医薬博甲第

報告番号

富医薬博乙第

審査委員

群棟

職 名

(主査)

教 授

森 田

(副査)

准教授

田 浦

(副査)

教 授

小 松

かつ子

(論文題目)

(判定)

Study on genetic polymorphism and essential oil composition of

Asian Curcuma species and crude drugs for standardization

(アジア産 Curcuma属植物・生薬の遺伝子多型と精油成分組成に

基づく標準化研究)

(論文審査の要旨)(2頁以内)

Curcuma属植物はアジアを中心に約30種の根茎が薬用に供されており、またグローバル化した今日、

原産地国が不明のまま同属生薬が医薬品や保健機能食品の原料として広域に流通している。同属植物

は分布域が広く形態的に類似するため、各国で異なる植物に同一の学名が付けられており、分類学的

に混乱している。このことは生薬にも波及し、正確な同定を含めた品質評価がなされていないため、

成分や薬理研究の報告では一貫性を欠く場合がしばしばである。C. longa(ウコン)は多様な薬理作用

を持つクルクミノイドで評価される一方、他種では本成分が無いかまたは微量なため、精油成分で評

価される。申請者が所属する研究室ではこれまでに中国・日本産生薬の鬱金や莪朮を葉緑体trnK遺伝

子の塩基配列に基づき同定し、瘀血の改善に関連する抗炎症作用を比較して、C. phaeocaulis由来莪朮

に活性を見出すとともに活性成分としてfranodienoneを同定した。このtrnK配列に基づく同定法をアジ

ア産同属生薬に適用したが、同定は困難であったことから、別法としてクルクミノイド生合成に関与

する酵素遺伝子〔ジケタイドCoA生合成酵素遺伝子(DCS1, 2)とクルクミノイド生合成酵素遺伝子

(CURS1-3)〕のイントロン長多型(ILP)に基づく分類法を検討し、trnK配列が相同であっても分子

分類可能であることを中国産生薬で証明した。そこで本研究では、アジア産Curcuma属植物の分子分

類法の確立と同属生薬の標準化を目的として、上記酵素遺伝子のILP及びtrnK遺伝子多型を明らかに

し、同定した植物・生薬について精油成分組成を検討した。本研究で見出された知見は下記に示すと

おりである。

1.DCS とCURS のILPマーカー及びtrnKイントロン配列に基づく分子分類

日本の薬用植物園で栽培されている7ヵ国から導入したCurcuma属植物51検体及び7ヵ国で蒐集した

生薬42検体を材料とし、これらを形態及び文献調査からCurcuma属12種〔C. longa (L)、C. aromatica (JA)、

C. zedoaria (Ze)、C. phaeocaulis (P)、C. aeruginosa (Ae)、C. wenyujin (W)、C. kwangsiensis (K)、C. zanthorrhiza

(Za)、C. amada (Am)、C. mangga (M)、C. petiolata (Pe)及びC. comosa (C)〕であると同定または推定し

た。全検体から抽出したDNAを鋳型としてDCSとCURSに介在する3つのイントロン領域(DCS intron

I, II; CURS intron)を3対の蛍光標識したプライマーを用いて増幅し、PCR産物をキャピラリー電気泳

動で解析して、フラグメントの長さと出現パターン(ILPパターン)を領域ごとに比較した。ILPパタ

ーンは各種固有であり、種内多型がほとんどない種(JA, Ze, P, Ae, W, Za)とある種(L, K, Am, M, C)

が存在した。ILPパターンに基づいて構築した系統樹ではPeとCからなるクレード、次にLのクレード

が分かれ、その他9種からなるクレードはさらに4サブクレード(JA; Ze, Ae及びP; W及びK; Za, Am及

びM)に分かれた。一方、trnK配列には主に7タイプがあった。生薬も同様に解析した後、植物のILP

パターン及びtrnK配列と比較して基原を検討した結果、通説とは異なり、インド生薬Kasturi manjalは

Zaであり、タイ生薬Kamin oiはCとLとの交配種由来である可能性が示唆された。また日本産莪朮はイ

ンドネシアやインドのC. zedoariaと関連性があることが示された。

2.DCS intron I及びCURS intronの塩基配列

主要な 5 種(L, JA, Ze, P, Za)を同定するためのマーカー配列を見出す目的で、DCS intron I 及び

CURS intron の PCR 産物のサブクローニングを行い、塩基配列を決定した。各検体に 31~38 種類の塩

基配列が見出され、DCS intron I に 6~8 タイプ、CURS intron に 8~11 タイプの配列が認められた。こ

れらの配列を GenBank に登録されている DCS1, 2 または CURS1-3 の塩基配列と比較して帰属させた

後、各検体の配列を比較した結果、相同性は 90%以上であり、特徴的な配列は見出せなかった。しか

し、この解析結果から、塩基配列の長さにおける多型性は ILP パターンに反映されていることが示唆

された。

3.固相マイクロ抽出-GC-MS分析で得られた精油成分組成

Curcuma属植物11種50検体の新鮮な根茎を30℃で乾燥したもの及び生薬20検体を粉末とし、固相マ

イクロ抽出してGC-MSで分析した。各ピークの保持時間とMSデータをNISTライブラリーと照合する

ことにより54成分を同定した。精油成分組成は大きく8タイプ(L; Ze, Ae及びP; JA及びW; K; Za; Am

及びM; Pe; C)に分けられた。それぞれbisabolane型;curzerene型・germacrane型;germacrane型;curzerene

型・germacrane型;cedrane型・bisabolane型;caryophyllane型・curzerene型;caryophyllane型・germacrane

型;santalene型・bisabolane型のセスキテルペノイドを含有した。上記のILPパターンに多型性がある種

では基本的組成は一致するものの変動が見られたが、原産地国による違いは少なかった。各タイプが

示す成分組成は、ILPパターン及びtrnK配列が一致する生薬であれば、一部の成分を除いて植物とほぼ

同様であった。GC-MSデータを用いた判別分析により、各種の区別に寄与する成分を明らかにした。

以上、クルクミノイド生合成に関与する酵素遺伝子のILPパターンと葉緑体trnK配列からそれぞれ

両性遺伝及び母系遺伝の結果を得ることができ、さらに精油成分組成を加えることにより、Curcuma

属植物・生薬が客観的に同定できるだけでなく、交配種であれば両親の植物種が推定可能になった。

このように本研究では植物分類及びアジア産Curcuma属生薬の標準化に寄与できる成果を得ており、

高く評価できる。

主査及び副査は、申請者 劉

群棟の論文内容について審査を行うとともに面接試験を行い、博士

(薬科学)の学位を授けるに値するものと判定した。

(学位論文のもとになる論文

1.

2.

3.

著者名,論文題目,掲載誌名,巻,最初の頁と最後の頁,年を記載)

Liu Q, Zhu S, Hayashi S, Iida O, Takano A, Miyake K, Sukrong S, Agil M, Balachandran I, Nakamura N,

Kawahara N, Komatsu K. Discrimination of Curcuma species from Asia using intron length polymorphism

markers in genes encoding diketide-CoA synthase and curcumin synthase. J Nat Med, published online, doi:

10.1007/s11418-021-01558-2, 2021

Liu Q, Zhu S, Hayashi S, Anjiki N, Takano A, Kawahara N, Komatsu K. Genetic analysis of Curcuma

species from Asia based on intron regions of genes encoding diketide-CoA synthase and curcumin synthase.

J Nat Med, published online, doi: https://doi.org/10.1007/s11418-021-01563-5, 2021

Liu Q, Komatsu K, Toume K, Zhu S, Tanaka K, Hayashi S, Anjiki N, Kawahara N, Takano A, Miyake K,

Nakamura N, Sukrong S, Agil M, Balachandran I. Essential oil composition of Curcuma species and drugs

from Asia analyzed by headspace solid-phase microextraction coupled with gas chromatography-mass

spectrometry. (in preparation)

...

参考文献をもっと見る