リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Synthetic circular RNA switches and circuits that control protein expression in mammalian cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Synthetic circular RNA switches and circuits that control protein expression in mammalian cells

Kameda, Shigetoshi Ohno, Hirohisa Saito, Hirohide 京都大学 DOI:10.1093/nar/gkac1252

2023.02.28

概要

Synthetic messenger RNA (mRNA) has been focused on as an emerging application for mRNA-based therapies and vaccinations. Recently, synthetic circular RNAs (circRNAs) have shown promise as a new class of synthetic mRNA that enables superior stability and persistent gene expression in cells. However, translational control of circRNA remained challenging. Here, we develop ‘circRNA switches’ capable of controlling protein expression from circRNA by sensing intracellular RNA or proteins. We designed microRNA (miRNA) and protein-responsive circRNA switches by inserting miRNA-binding or protein-binding sequences into untranslated regions (UTRs), or Coxsackievirus B3 Internal Ribosome Entry Site (CVB3 IRES), respectively. Engineered circRNAs efficiently expressed reporter proteins without inducing severe cell cytotoxicity and immunogenicity, and responded to target miRNAs or proteins, controlling translation levels from circRNA in a cell type-specific manner. Moreover, we constructed circRNA-based gene circuits that selectively activated translation by detecting endogenous miRNA, by connecting miRNA and protein-responsive circRNAs. The designed circRNA circuits performed better than the linear mRNA-based circuits in terms of persistent expression levels. Synthetic circRNA devices provide new insights into RNA engineering and have a potential for RNA synthetic biology and therapies.

この論文で使われている画像

参考文献

1. Sahin,U., Kariko´,K. and Tu¨ reci,O¨ . (2014) MRNA-based therapeutics-developing a new class of drugs. Nat. Rev. Drug Discov., 13, 759–780.

2. Wang,Y. and Wang,Z. (2015) Efficient backsplicing produces translatable circular mRNAs. RNA,. 21, 172–179.

3. Wesselhoeft,R.A., Kowalski,P.S. and Anderson,D.G. (2018) Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun., 9, 2629.

4. Costello,A., Lao,N.T., Barron,N. and Clynes,M. (2020) Reinventing the wheel: synthetic circular RNAs for mammalian cell engineering. Trends Biotechnol., 38, 217–230.

5. Jeck,W.R., Sorrentino,J.A., Wang,K., Slevin,M.K., Burd,C.E., Liu,J., Marzluff,W.F. and Sharpless,N.E. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA,. 19, 426.

6. Cocquerelle,C., Mascrez,B., He´tuin,D. and Bailleul,B. (1993) Mis-splicing yields circular RNA molecules. FASEB J., 7, 155–160.

7. Santer,L., Ba¨r,C. and Thum,T. (2019) Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol. Ther., 27, 1350–1363.

8. Enuka,Y., Lauriola,M., Feldman.,M.E., Sas-Chen,A., Ulitsky,I. and Yarden,Y. (2016) Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic. Acids. Res., 44, 1370–1383.

9. Veiga,N., Goldsmith,M., Granot,Y., Rosenblum,D., Dammes,N., Kedmi,R., Ramishetti,S. and Peer,D. (2018) Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun., 9, 4493.

10. Lockhart,J.H., VanWye,J., Banerjee,R., Wickline,S.A., Pan,H. and Totary-Jain,H. (2021) Self-assembled miRNA-switch nanoparticles target denuded regions and prevent restenosis. Mol. Ther., 29, 1744–1757.

11. Andries,O., Kitada,T., Bodner,K., Sanders,N.N. and Weiss,R. (2014) Synthetic biology devices and circuits for RNA-based ‘smart vaccines’: a propositional review. Expert Rev. Vaccines, 14, 313–331.

12. Zhang,J. and Salaita,K. (2021) Smart nucleic acids as future therapeutics. Trends Biotechnol., 39, 1289–1307.

13. Puttaraju,M. and Been,M.D. (1996) Circular ribozymes generated in Escherichia coli using group I self- splicing permuted intron-exon sequences. J. Biol. Chem., 271, 26081–26087.

14. Umekage,S. and Kikuchi,Y. (2009) In vitro and in vivo production and purification of circular RNA aptamer. J. Biotechnol., 139, 265–272.

15. Chen,Y.G., Kim,M.V., Chen,X., Batista,P.J., Aoyama,S., Wilusz,J.E., Iwasaki,A. and Chang,H.Y. (2017) Sensing self and foreign circular RNAs by intron identity. Mol. Cell., 67, 228–238.

16. Wesselhoeft,R.A., Kowalski,P.S., Parker-Hale,F.C., Huang,Y., Bisaria,N. and Anderson,D.G. (2019) RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell., 74, 508–520.

17. Chen,Y.G., Chen,R., Ahmad,S., Verma,R., Katsuri,S.P., Amaya,L., Broughton,J.P., Kim,J., Cadena,C., Pulendran,B. et al. (2019) N6-Methyladenosine modification controls circular RNA immunity. Mol. Cell., 76, 96–109.

18. Liu,C.X., Guo,S.K., Nan,F., Xu,Y.F., Yang,L. and Chen,L.L. (2022) RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell., 82, 420–434.

19. Abe,N., Matsumoto,K., Nishihara,M., Nakano,Y., Shibata,A., Maruyama,H., Shuto,S., Matsuda,A., Yoshida,M., Ito,Y. et al. (2015) Rolling circle translation of circular RNA in living human cells. Sci. Rep., 5, 16435.

20. Iwakawa,H. and Tomari,Y. (2015) The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol., 25, 651–665.

21. Bird,A., Wroblewska,L., Prochazka,L., Weiss,R. and Beneson,Y. (2011) Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science, 333, 1307–1312.

22. Miki,K., Endo,K., Takahashi,S., Funakoshi,S., Takei,I., Katayama,S., Toyoda,T., Kotaka,M., Takaki,T., Umeda,M. et al. (2015) Efficient detection and purification of cell populations using synthetic MicroRNA switches. Cell Stem Cell, 16, 699–711.

23. Wroblewska,L., Kitada,T., Endo,K., Siciliano,V., Stillo,B., Saito,H. and Weiss,R. (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat. Biotechnol., 33, 839–841.

24. Hirosawa,M., Fujita,Y., Parr,C.J.C., Hayashi,K., Kashida,S., Hotta,A., Woltjen,K. and Saito,H. (2017) Cell-type-specific genome editing with a microRNA-responsive CRISPR-Cas9 switch. Nucleic Acids Res., 45, e118.

25. Fujita,Y., Hirosawa,M., Hayashi,K., Hatani,T., Yoshida,Y., Yamamoto,T. and Saito,H. (2022) A versatile and robust cell purification system with an RNA-only circuit composed of microRNA-responsive ON and OFF switches. Sci. Adv., 8, eabj1793.

26. Liu,X., Abraham,J.M., Cheng,Y., Wang,Z., Wang,Z., Zhang,G., Ashktorab,H., Smoot,D.T., Cole,R.N., Boronina,T.N. et al. (2018) Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol. Ther. - Nucleic Acids., 13, 312–321.

27. Mu¨ ller,S., Wedler,A., Breuer,J., Glaβ,M., Bley,N., Lederer,M., Haase,J., Misiak,C., Fuchs,T., Ottmann,A. et al. (2020) Synthetic circular miR-21 RNA decoys enhance tumor suppressor expression and impair tumor growth in mice. NAR Cancer, 2, zcaa014.

28. Lavenniah,A., Luu,T.D.A., Li,Y.P., Lim,T.B., Jiang,J., Ackers-Johnson,M. and Foo,R.S-Y. (2020) Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther., 28, 1506–1517.

29. Hansen,T.B., Wiklund,E.D., Bramsen,J.B., Villadsen,S.B., Statham,A.L., Clark,S.J. and Kjems,J. (2011) MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J., 30, 4414–4422.

30. Kawasaki,S., Fujita,Y., Nagaike,T., Tomita,K. and Saito,H. (2017) Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res., 45, e117.

31. Ono,H., Kawasaki,S. and Saito,H. (2020) Orthogonal protein-responsive mRNA switches for mammalian synthetic biology. ACS Synth. Biol., 9, 169–174.

32. Souii,A., Ben,M, Hadheb-Gharbi,M. and Gharbi,J. (2013) Role of RNA structure motifs in ires-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol. Biotechnol., 55, 179–202.

33. Ashwal-Fluss,R., Meyer,M., Pamudurti,N.R., Ivanov,A., Bartok,O., Hanan,M., Evantal,N., Memczak,S., Rajewsky,N. and Kadener,S. (2014) CircRNA biogenesis competes with Pre-mRNA splicing. Mol. Cell., 56, 55–66.

34. Du,W.W., Fang,L., Yang,W., Wu,N., Awan,F.M., Yang,Z. and Yang,B.B. (2017) Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ., 24, 357–370.

35. Liu,C.X., Li,X., Nan,F., Jiang,S., Gao,X., Guo,S.K., Xue,W., Cui,Y., Dong,K., Ding,H. et al. (2019) Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell,. 177, 865–880.

36. Shi,L., Liu,B., Shen,D.D., Yan,P., Zhang,Y., Tian,Y., Hou,L., Jiang,G., Zhu,Y., Liang,Y. et al. (2021) A tumor-suppressive circular RNA mediates uncanonical integrin degradation by the proteasome in liver cancer. Sci. Adv., 7, eabe5043.

37. Litke,J.L. and Jaffrey,S.R. (2019) Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol., 37, 667–675.

38. Schreiner,S., Didio,A., Hung,L.H. and Bindereif,A. (2021) Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res., 48, 12326–12335.

39. Petkovic,S. and Mu¨ ller,S. (2015) RNA circularization strategies in vivo and in vitro. Nucleic Acids Res., 43, 2454–2465.

40. Kahvejian,A., Svitkin,Y.V., Sukarieh,R., M’Boutchou,M.N. and Sonenberg,N. (2005) Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev., 19, 104–113.

41. Chen,R., Wang,S.K., Belk,J.A., Amaya,L., Li,Z., Cardenas,A., Abe,B.T., Chen,C.K., Wender,P.A. and Chang,H.Y. (2022) Engineering circular RNA for enhanced protein production. Nat. Biotechnol., https://doi.org/10.1038/s41587-022-01393-0.

42. Warren,L., Manos,P.D., Ahfeldt,T., Loh,Y.H., Li,H., Lau,F., Ebina,W., Mandal,P.K., Smith,Z.D., Meissner,A. et al. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618–630.

43. Andries,O., Cafferty,S.M., Smedt,S.C.D., Weiss,R., Sanders,N.N. and Kitada,T. (2015) N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release., 217, 337–344.

44. Parr,C.J.C., Wada,S., Kotake,K., Kameda,S., Matsuura,S., Sakashita,S., Park,S., Sugiyama,H., Kuang,Y. and Saito,H. (2020) N1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. Nucleic Acids Res., 48, e35.

45. Endo,K., Hayashi,K. and Saito,H. (2016) High-resolution identification and separation of living cell types by multiple microRNA-responsive synthetic mRNAs. Sci. Rep., 6, 21991.

46. Sato,K., Hamada,M., Asai,K. and Mituyama,T. (2009) CentroidFold: a web server for RNA secondary structure prediction. Nucleic Acids Res., 37, 277–280.

47. Inamura,K. and Ishikawa,Y. (2016) MicroRNA in lung cancer: novel biomarkers and potential tools for treatment. J. Clin. Med., 5, 36.

48. Yang,D., Cheung,P., Sun,Y., Yuan,J., Zhang,H., Carthy,C.M., Anderson,D.R., Bohunek,L., Wilson,J.E. and McManus,B.M. (2003) A Shine-Dalgarno-like sequence mediates in vitro ribosomal internal entry and subsequent scanning for translation initiation of coxsackievirus B3 RNA. Virology, 305, 31–43.

49. De Breyne,S., Yu,Y., Unbehaun,A., Pestova,T.V. and Hellen,C.U.T. (2009) Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites. Proc. Natl. Acad. Sci. U.S.A., 106, 9197–9202.

50. Nakanishi,H. and Saito,H. (2020) Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only delivery. Nat. Commun., 11, 2–3.

51. Stripecke,R., Oliveira,C.C., McCarthy,J.E. and Hentze,M.W. (1994) Proteins binding to 5r untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol. Cell. Biol., 14, 5898–5909.

52. Endo,K., Stapleton,J.A., Hayashi,K., Saito,H. and Inoue,T. (2013) Quantitative and simultaneous translational control of distinct mammalian mRNAs. Nucleic Acids Res., 41, e135.

53. McKay,P.F., Hu,K., Blakney,A.K., Samnuan,K., Brown,J.C., Penn,R., Zhou,J., Bouton,C.R., Rogers,P., Polra,K. et al. (2020) Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun., 11, 3–9.

54. Lockhart,J., Canfield,J., Mong,E.F., VanWye,J. and Totary-Jain,H. (2019) Nucleotide modification alters MicroRNA-dependent silencing of MicroRNA switches. Mol. Ther. - Nucleic Acids., 14, 339–350.

55. Thess,A., Grund,S., Mui,B.L., Hope,M.J., Baumhof,P., Fotin-Mleczek,M. and Schlake,T. (2015) Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther., 23, 1456–1464.

56. Kariko´,K., Kuo,A. and Barnathan,E.S. (1999) Overexpression of urokinase receptor in mammalian cells following administration of the in vitro transcribed encoding mRNA. Gene Ther., 6, 1092–1100.

57. Orlandini von Niessen,A.G., Poleganov,M.A., Rechner,C., Plaschke,A., Kranz,L.M., Fesser,S., Diken,M., Lo¨ wer,M., Vallazza,B., Beissert,T. et al. (2019) Improving mRNA-based therapeutic gene delivery by expression-augmenting 3r UTRs identified by cellular library screening. Mol. Ther., 27, 824–836.

58. Nakanishi,H., Miki,K., Komatsu,K.R., Umeda,M., Mochizuki,M., Inagaki,A., Yoshida,Y. and Saito,H. (2017) Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials, 128, 121–135.

59. Pardi,M.L., Wu,J., Kawasaki,S. and Saito,H. (2022) Synthetic RNA-based post-transcriptional expression control methods and genetic circuits. Adv. Drug Deliv. Rev., 184, 114196.

参考文献をもっと見る