リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dimethyl Fumarate Protects Rats against Testicular Ischemia–Reperfusion Injury」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dimethyl Fumarate Protects Rats against Testicular Ischemia–Reperfusion Injury

Onishi, Atsushi Chiba, Koji Kawamura, Shun Sato, Katsuya Kaku, Yasuhiro Okada, Keisuke Fujisawa, Masato 神戸大学

2023.06.15

概要

Ischemia–reperfusion injury (IRI) after testicular torsion is linked to significant damage in testicular tissue. Dimethyl fumarate (DMF) activates the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, thereby inducing antioxidant and anti-inflammatory effects. We analyzed the usefulness of DMF in preventing IRI following testicular torsion/detorsion in Sprague-Dawley rats (n=32). The animals were classified into control (sham), DMF (200 mg/kg/day), IRI, and IRI+DMF (IRI with 200 mg/kg/day DMF) groups. Testicular IRI was induced by detorsion after 1.5 h of torsion. DMF was administered via oral gavage daily from 1 h before testicular detorsion until day 7, when orchiectomy was performed. The testis-to-body weight ratio was calculated. Histopathological evaluation was performed using the Johnsen and Cosentino scores for seminiferous tubules. Malondialdehyde, superoxide dismutase, and total glutathione levels were determined in testicular tissues. Moreover, Nrf2, heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), nuclear factor kappa B (NF-κB), and inflammatory cytokine (interleukin 1b (IL1b), IL6, and tumor necrosis factor alpha (TNF-α)) levels were determined through quantitative polymerase chain reaction. Nuclear Nrf2 and cytoplasmic HO-1 and NQO1 protein levels were also evaluated. DMF significantly improved the testis-to-body weight ratio and reduced histopathological damage in the testes. Moreover, it significantly improved the concentration of malondialdehyde, superoxide dismutase, and total glutathione. Furthermore, it inhibited NF-κB and inflammatory cytokine mRNA expression compared with the findings obtained in untreated rats with IRI (all p<0.05). Nrf2, HO-1, and NQO1 expressions (mRNA and protein) were markedly elevated following DMF treatment in rats with IRI (all p<0.05). DMF administration activated the Nrf2 signaling pathway and induced antioxidant and anti-inflammatory effects, thereby improving IRI-induced testicular damage. Thus, DMF may prevent IRI following testicular torsion.

この論文で使われている画像

参考文献

[1] L. C. Zhao, T. B. Lautz, J. J. Meeks, and M. Maizels, “Pediatric

testicular torsion epidemiology using a national database: incidence, risk of orchiectomy and possible measures toward

improving the quality of care,” Journal of Urology, vol. 186,

no. 5, pp. 2009–2013, 2011.

[2] J. M. Mansbach, P. Forbes, and C. Peters, “Article,” Archives of

Pediatrics & Adolescent Medicine, vol. 159, no. 12, pp. 1167–

1171, 2005.

[3] L. B. Mellick, J. E. Sinex, R. W. Gibson, and K. Mears, “A systematic review of testicle survival time after a torsion event,”

Pediatric Emergency Care, vol. 35, no. 12, pp. 821–825, 2019.

[4] A. J. Visser and C. F. Heyns, “Testicular function after torsion

of the spermatic cord,” BJU International, vol. 92, no. 3,

pp. 200–203, 2003.

[5] X. Zhang, J. Zhang, Z. Cai, X. Wang, W. Lu, and H. Li, “Effect

of unilateral testicular torsion at different ages on male fertility,” Journal of International Medical Research, vol. 48, no. 4,

p. 300060520918792, 2020.

[6] L. B. Becker, “New concepts in reactive oxygen species and cardiovascular reperfusion physiology,” Cardiovascular Research,

vol. 61, no. 3, pp. 461–470, 2004.

[7] A. Kato, C. Gabay, T. Okaya, and A. B. Lentsch, “Specific role

of interleukin-1 in hepatic neutrophil recruitment after ischemia/reperfusion,” American Journal of Pathology, vol. 161,

no. 5, pp. 1797–1803, 2002.

[8] N. Maekawa, H. Wada, T. Kanda et al., “Improved myocardial

ischemia/reperfusion injury in mice lacking tumor necrosis

factor-α,” Journal of the American College of Cardiology,

vol. 39, no. 7, pp. 1229–1235, 2002.

[9] M. D. Menger, M. Rücker, and B. Vollmar, “Capillary dysfunction in striated muscle ischemia/reperfusion,” Shock, vol. 8,

no. 1, pp. 2–7, 1997.

[10] T. L. Vanden Hoek, Z. Shao, C. Li, R. Zak, P. T. Schumacker,

and L. B. Becker, “Reperfusion injury on cardiac myocytes

after simulated ischemia,” American Journal of PhysiologyHeart and Circulatory Physiology, vol. 270, no. 4, pp. H1334–

H1341, 1996.

[11] M. J. Anderson, J. K. Dunn, L. I. Lipshultz, and M. Coburn,

“Semen quality and endocrine parameters after acute testicular

torsion,” Journal of Urology, vol. 147, no. 6, pp. 1545–1550,

1992.

[12] W. E. Thomas, M. J. Cooper, G. A. Crane, G. Lee, and R. C.

Williamson, “Testicular exocrine malfunction after torsion,”

The Lancet, vol. 2, no. 8416, pp. 1357–1360, 1984.

[13] B. Erol, M. Bozlu, V. Hanci, H. Tokgoz, S. Bektas, and

G. Mungan, “Coenzyme Q10 treatment reduces lipid peroxidation, inducible and endothelial nitric oxide synthases, and

germ cell-specific apoptosis in a rat model of testicular ischemia/reperfusion injury,” Fertility & Sterility, vol. 93, no. 1,

pp. 280–282, 2010.

[14] R. Bilommi, B. A. Nawas, D. D. Kusmayadi, R. Diposarosa,

A. Chairul, and B. S. Hernowo, “The effects of glutathione on

malondialdehyde expression and seminiferous tubule damage

in experimental testicular torsion–detorsion in Wistar rats,”

Journal of Pediatric Urology, vol. 9, no. 6, Part B, pp. 1059–

1063, 2013.

[15] M. Kanter, “Protective effects of melatonin on testicular torsion/detorsion-induced ischemia–reperfusion injury in rats,”

Experimental & Molecular Pathology, vol. 89, no. 3, pp. 314–

320, 2010.

[16] E. Yuluğ, S. Türedi, E. Karagüzel, Ö. Kutlu, A. Menteşe, and

A. Alver, “The short term effects of resveratrol on ischemiareperfusion injury in rat testis,” Journal of Pediatric Surgery,

vol. 49, no. 3, pp. 484–489, 2014.

[17] M. Bašković, A. K. Bojanac, N. Sinčić, M. H. Perić, D. Krsnik,

and D. Ježek, “The effect of astaxanthin on testicular torsiondetorsion injury in rats - detailed morphometric evaluation

of histological sections,” Journal of Pediatric Urology, vol. 17,

no. 4, pp. 439.e1–439.e12, 2021.

[18] D. Dokmeci, M. Kanter, M. Inan et al., “Protective effects of

ibuprofen on testicular torsion/detorsion-induced ischemia/

reperfusion injury in rats,” Archives of Toxicology, vol. 81,

no. 9, pp. 655–663, 2007.

[19] D. Sarıbal, E. Erdem, N. E. Güngör-Ordueri, A. Usta,

C. Karakuş, and M. Karacan, “Metformin decreases testicular

damages following ischaemia/reperfusion injury in rats,”

Andrologia, vol. 52, no. 2, article e13481, 2020.

[20] J. G. Mogilner, M. Lurie, A. G. Coran, O. Nativ, E. Shiloni, and

I. Sukhotnik, “Effect of diclofenac on germ cell apoptosis fol-

Andrologia

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

lowing testicular ischemia-reperfusion injury in a rat,” Pediatric Surgery International, vol. 22, no. 1, pp. 99–105, 2006.

A. Beheshtian, A. H. Salmasi, S. Payabvash et al., “Protective

effects of sildenafil administration on testicular torsion/detorsion damage in rats,” World Journal of Urology, vol. 26,

no. 2, pp. 197–202, 2008.

P. Dejban, N. Rahimi, N. Takzare, M. Jahansouz, and A. R.

Dehpour, “Protective effects of sumatriptan on ischaemia/

reperfusion injury following torsion/detorsion in ipsilateral

and contralateral testes of rat,” Andrologia, vol. 51, no. 9, article e13358, 2019.

K. Sumii, H. Miyake, N. Enatsu, K. Chiba, and M. Fujisawa,

“Characterization of urocortin as an anti-apoptotic protein in

experimental ischemia-reperfusion model of the rat testis,”

Biochemical & Biophysical Research Communications,

vol. 479, no. 2, pp. 387–392, 2016.

A. Kobayashi, M. I. Kang, H. Okawa et al., “Oxidative stress

sensor Keap1 functions as an adaptor for Cul3-based E3 ligase

to regulate proteasomal degradation of Nrf2,” Molecular &

Cellular Biology, vol. 24, no. 16, pp. 7130–7139, 2004.

A. Kobayashi, M. I. Kang, Y. Watai et al., “Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1,” Molecular & Cellular Biology,

vol. 26, no. 1, pp. 221–229, 2006.

T. Iso, T. Suzuki, L. Baird, and M. Yamamoto, “Absolute

amounts and status of the Nrf2-Keap1-Cul3 complex within

cells,” Molecular & Cellular Biology, vol. 36, no. 24,

pp. 3100–3112, 2016.

K. Itoh, T. Chiba, S. Takahashi et al., “An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying

enzyme genes through antioxidant response elements,” Biochemical & Biophysical Research Communications, vol. 236,

no. 2, pp. 313–322, 1997.

B. N. Chorley, M. R. Campbell, X. Wang et al., “Identification

of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha,” Nucleic Acids Research, vol. 40, no. 15,

pp. 7416–7429, 2012.

Y. Hirotsu, F. Katsuoka, R. Funayama et al., “Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic

networks,” Nucleic Acids Research, vol. 40, no. 20, pp. 10228–

10239, 2012.

M. D. Maines, “The heme oxygenase system: a regulator of second messenger gases,” Annual Review of Pharmacology & Toxicology, vol. 37, no. 1, pp. 517–554, 1997.

S. F. Llesuy and M. L. Tomaro, “Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage,” Biochimica et

Biophysica Acta (BBA) - Molecular Cell Research, vol. 1223,

no. 1, pp. 9–14, 1994.

D. Siegel, D. L. Gustafson, D. L. Dehn et al., “NAD(P)H:quinone oxidoreductase 1: role as a superoxide scavenger,” Molecular Pharmacology, vol. 65, no. 5, pp. 1238–1247, 2004.

S. E. Nennig and J. R. Schank, “The role of NFkB in drug

addiction: beyond inflammation,” Alcohol & Alcoholism,

vol. 52, no. 2, pp. 172–179, 2017.

P. A. Baeuerle and D. Baltimore, “IκB: a specific inhibitor of

the NF-κB transcription factor,” Science, vol. 242, no. 4878,

pp. 540–546, 1988.

G. Ghosh, G. van Duyne, S. Ghosh, and P. B. Sigler, “Structure

of NF-κB p50 homodimer bound to a κB site,” Nature,

vol. 373, no. 6512, pp. 303–310, 1995.

Andrologia

[36] M. D. Jacobs and S. C. Harrison, “Structure of an IκBα/NF-κB

complex,” Cell, vol. 95, no. 6, pp. 749–758, 1998.

[37] H. L. Pahl, “Activators and target genes of Rel/NF-κB transcription factors,” Oncogene, vol. 18, no. 49, pp. 6853–6866, 1999.

[38] M. Karin, “How NF-κB is activated: the role of the IκB kinase

(IKK) complex,” Oncogene, vol. 18, no. 49, pp. 6867–6874, 1999.

[39] R. K. Thimmulappa, H. Lee, T. Rangasamy et al., “Nrf2 is a

critical regulator of the innate immune response and survival

during experimental sepsis,” Journal of Clinical Investigation,

vol. 116, no. 4, pp. 984–995, 2006.

[40] L. G. Chen, Y. Q. Zhang, Z. Z. Wu, C. W. Hsieh, C. S. Chu, and

B. S. Wung, “Peanut arachidin-1 enhances Nrf2-mediated protective mechanisms against TNF-α-induced ICAM-1 expression and NF-ΚB activation in endothelial cells,” International

Journal of Molecular Medicine, vol. 41, no. 1, pp. 541–547, 2018.

[41] X. Qi, Z. Qin, J. Tang et al., “Omega-3 polyunsaturated fatty

acids ameliorates testicular ischemia- reperfusion injury

through the induction of Nrf2 and inhibition of NF-κB in

rats,” Experimental & Molecular Pathology, vol. 103, no. 1,

pp. 44–50, 2017.

[42] Y. Zhang, Y. Cao, F. Wang et al., “4-Nitrophenol induces activation of Nrf2 antioxidant pathway and apoptosis of the germ

cells in rat testes,” Environmental Science & Pollution Research

International, vol. 23, no. 13, pp. 13035–13046, 2016.

[43] Y. Wang, T. T. Zhao, H. Y. Zhao, and H. Wang, “Melatonin

protects methotrexate-induced testicular injury in rats,” European Review for Medical & Pharmacological Sciences, vol. 22,

no. 21, pp. 7517–7525, 2018.

[44] R. J. Fox, D. H. Miller, J. T. Phillips et al., “Placebo-controlled

phase 3 study of Oral BG-12 or glatiramer in multiple sclerosis,” New England Journal of Medicine, vol. 367, no. 12,

pp. 1087–1097, 2012.

[45] R. Gold, L. Kappos, D. L. Arnold et al., “Placebo-controlled

phase 3 study of oral BG-12 for relapsing multiple sclerosis,”

New England Journal of Medicine, vol. 367, no. 12, pp. 1098–

1107, 2012.

[46] R. Gold, D. L. Arnold, A. Bar-Or et al., “Long-term effects of

delayed-release dimethyl fumarate in multiple sclerosis:

interim analysis of ENDORSE, a randomized extension study,”

Multiple Sclerosis, vol. 23, no. 2, pp. 253–265, 2017.

[47] R. A. Linker and A. Haghikia, “Dimethyl fumarate in multiple

sclerosis: latest developments, evidence and place in therapy,”

Therapeutic Advances in Chronic Disease, vol. 7, no. 4,

pp. 198–207, 2016.

[48] R. H. Scannevin, S. Chollate, M. Y. Jung et al., “Fumarates promote cytoprotection of central nervous system cells against

oxidative stress via the nuclear factor (erythroid-derived 2)like 2 pathway,” Journal of Pharmacology & Experimental

Therapeutics, vol. 341, no. 1, pp. 274–284, 2012.

[49] K. Ghoreschi, J. Brück, C. Kellerer et al., “Fumarates improve

psoriasis and multiple sclerosis by inducing type II dendritic

cells,” Journal of Experimental Medicine, vol. 208, no. 11,

pp. 2291–2303, 2011.

[50] X. Zhen, L. Jindong, Z. Yang et al., “Activation of Nrf2 pathway by dimethyl fumarate attenuates renal ischemia- reperfusion injury,” Transplantation Proceedings, vol. 53, no. 7,

pp. 2133–2139, 2021.

[51] C. Takasu, N. D. Vaziri, S. Li et al., “Treatment with dimethyl

fumarate ameliorates liver ischemia/reperfusion injury,”

World Journal of Gastroenterology, vol. 23, no. 25, pp. 4508–

4516, 2017.

[52] S. G. Johnsen, “Testicular biopsy score count–a method for

registration of spermatogenesis in human testes: normal values

and results in 335 hypogonadal males,” Hormones, vol. 1,

no. 1, pp. 2–25, 1970.

[53] M. J. Cosentino, M. Nishida, R. Rabinowitz, and A. T. Cockett,

“Histopathology of prepubertal rat testes subjected to various

durations of spermatic cord torsion,” Journal of Andrology,

vol. 7, no. 1, pp. 23–31, 1986.

[54] Y. Kanda, “Investigation of the freely available easy-to-use

software ‘EZR’ for medical statistics,” Bone Marrow Transplantation, vol. 48, no. 3, pp. 452–458, 2013.

[55] G. Barroso, M. Morshedi, and S. Oehninger, “Analysis of DNA

fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa,” Human

Reproduction, vol. 15, no. 6, pp. 1338–1344, 2000.

[56] D. Santi, G. Spaggiari, and M. Simoni, “Sperm DNA fragmentation index as a promising predictive tool for male infertility

diagnosis and treatment management - meta-analyses,” Reproductive Biomedicine Online, vol. 37, no. 3, pp. 315–326, 2018.

[57] M. P. Hedger and A. Meinhardt, “Cytokines and the immunetesticular axis,” Journal of Reproductive Immunology, vol. 58,

no. 1, pp. 1–26, 2003.

[58] K. L. Loveland, B. Klein, D. Pueschl et al., “Cytokines in male

fertility and reproductive pathologies: immunoregulation and

beyond,” Frontiers in Endocrinology, vol. 8, p. 307, 2017.

[59] S. Shimizu, P. Tsounapi, F. Dimitriadis, Y. Higashi, T. Shimizu,

and M. Saito, “Testicular torsion–detorsion and potential therapeutic treatments: a possible role for ischemic postconditioning,” International Journal of Urology, vol. 23, no. 6, pp. 454–

463, 2016.

[60] G. Vaos and N. Zavras, “Antioxidants in experimental

ischemia-reperfusion injury of the testis: where are we heading

towards?,” World Journal of Methodology, vol. 7, no. 2, pp. 37–

45, 2017.

[61] G. Yu, Y. Guan, L. Liu et al., “The protective effect of lowenergy shock wave on testicular ischemia- reperfusion injury

is mediated by the PI3K/AKT/NRF2 pathway,” Life Sciences,

vol. 213, pp. 142–148, 2018.

[62] Z. Qin, K. Zhu, J. Xue et al., “Zinc-induced protective effect for

testicular ischemia-reperfusion injury by promoting antioxidation via microRNA-101-3p/Nrf2 pathway,” Aging, vol. 11,

no. 21, pp. 9295–9309, 2019.

[63] Á. Cores, M. Piquero, M. Villacampa, R. León, and J. C.

Menéndez, “NRF2 regulation processes as a source of potential

drug targets against neurodegenerative diseases,” Biomolecules, vol. 10, no. 6, p. 904, 2020.

[64] Y. Yao, W. Miao, Z. Liu et al., “Dimethyl fumarate and monomethyl fumarate promote post-ischemic recovery in mice,”

Translational Stroke Research, vol. 7, no. 6, pp. 535–547, 2016.

[65] L. He, P. Li, L. H. Yu et al., “Protective effects of proanthocyanidins against cadmium-induced testicular injury through the

modification of Nrf2-Keap1 signal path in rats,” Environmental Toxicology and Pharmacology, vol. 57, pp. 1–8, 2018.

[66] A. T. Fahim, A. A. A. El-Fattah, N. A. H. Sadik, and B. M. Ali,

“Resveratrol and dimethyl fumarate ameliorate testicular dysfunction caused by chronic unpredictable mild stress-induced

depression in rats,” Archives of Biochemistry & Biophysics,

vol. 665, pp. 152–165, 2019.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る