リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Primordial Non-Gaussianities from General Models of Inflation and Bounce」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Primordial Non-Gaussianities from General Models of Inflation and Bounce

赤間 進吾 立教大学 DOI:info:doi/10.14992/00020645

2021.05.11

概要

(1) 論文の構成
本論文の第一章は導入にあてられている。第二章ではまず一般相対論に基づいた標準宇宙論とその問題点が述べられている。次いで第三章では、一般相対論から修正された重力理論を念頭に置いて、この論文の主要なテーマである宇宙論的摂動論の一般論が述べられている。第四章では、インフレーション模型の代替理論としての反跳宇宙模型において生成される揺らぎの非ガウス性が申請者らの研究成果を含めて述べられている。第五章では、量子論的な揺らぎの生成の計算において標準的に採用されている Bunch-Davies 真空の仮定を緩めた場合の理論的予言が申請者らの研究成果を含めて述べられている。第六章は本論文全体のまとめである。

(2)論文の内容要旨
インフレーション宇宙模型は、標準ビッグバン宇宙論の問題点を解決できる だけでなく、宇宙マイクロ波背景放射(CMB)の観測事実と整合的であることから、現在ほぼ標準的とみなされている初期宇宙模型である。しかし、初期特異点問題 や遷プランク問題といった、インフレーション模型でも解決できない問題点も 存在する。

そこで、これらの問題点を回避する代替模型が古くから提案されている。これらの模型が初期宇宙模型の候補になるかどうかを知るには、まずインフレーション模型と同等に現在の観測と整合的になり得るのかを調べる必要がある。また、現在の観測と整合的な代替宇宙模型については、今後のより精密な CMB 及び原始重力波観測を見据え、観測による模型の判別可能性について議論することが重要になる。代表的な代替宇宙模型として、反跳模型がある。この模型では、インフレーション模型と同様にスケール不変な曲率揺らぎを生成できる。しかし、原始重力波が曲率揺らぎよりも十分小さいことと曲率揺らぎがほぼガウス統計に従うという観測事実を同時に実現できないことが、K-エッセンスと呼ばれる単一スカラー場理論において示されている。

本論文では、まず拡張されたスカラー場理論(Horndeski 理論)に基づき、具体的な反跳模型に限定せずに、揺らぎのパワースペクトル及び統計の非ガウス性を計算する方法を示した。その後、上述の観測事実との矛盾が、Horndeski 理論では一般には取り除けることを示した。さらに、原始重力波の非ガウス性を求めることで、インフレーション宇宙模型との理論予言の違いを探した。

一方、インフレーション起源の量子揺らぎは、これまで主に Bunch-Davies 真空と呼ばれる理論的に自然であるが特定の初期条件が仮定されている。しかし、揺らぎの初期条件は理論だけでは定まらない。そこで、非 Bunch-Davies 真空を初期条件に持つ揺らぎの研究も行われている。この場合、曲率揺らぎの非ガウス性が Bunch-Davies 真空の時とは異なる波数依存性を持ち、またその振幅も増幅されることが知られている。そこで本論文では、非 Bunch-Davies 真空を初期条件に持つ一般的なインフレーション模型を用いて、原始重力波の自己相互作用により生成される非ガウス性及び原始重力波と曲率揺らぎの相互作用を通して生成される非ガウス性を求めた。そして、後者の非ガウス性が Bunch-Davies 真空の時とは異なるだけでなく、これまで予言されたものとは異なる新しい波数依存性を持ち、振幅も増幅され得ることを示した。

参考文献

[1] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Adv. Ser. Astrophys. Cosmol. 3 (1987) 139.

[2] A.A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity, Adv. Ser. Astrophys. Cosmol. 3 (1987) 130.

[3] K. Sato, First Order Phase Transition of a Vacuum and Expansion of the Universe, Mon. Not. Roy. Astron. Soc. 195 (1981) 467.

[4] PLANCK collaboration, Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [1807.06211].

[5] A. Borde and A. Vilenkin, Singularities in inflationary cosmology: A Review, Int. J. Mod. Phys. D 5 (1996) 813 [gr-qc/9612036].

[6] J. Martin and R.H. Brandenberger, The TransPlanckian problem of inflationary cosmology, Phys. Rev. D 63 (2001) 123501 [hep-th/0005209].

[7] D. Battefeld and P. Peter, A Critical Review of Classical Bouncing Cosmologies, Phys. Rept. 571 (2015) 1 [1406.2790].

[8] R. Holman and A.J. Tolley, Enhanced Non-Gaussianity from Excited Initial States, JCAP 05 (2008) 001 [0710.1302].

[9] S. Kundu, Non-Gaussianity Consistency Relations, Initial States and Back-reaction, JCAP 04 (2014) 016 [1311.1575].

[10] A. Ashoorioon, Rescuing Single Field Inflation from the Swampland, Phys. Lett. B 790 (2019) 568 [1810.04001].

[11] S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley and Sons, New York (1972).

[12] E.W. Kolb and M.S. Turner, The Early Universe, vol. 69 (1990).

[13] SUPERNOVA SEARCH TEAM collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009 [astro-ph/9805201].

[14] S. Weinberg, Anthropic Bound on the Cosmological Constant, Phys. Rev. Lett. 59 (1987) 2607.

[15] PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].

[16] A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177.

[17] C. Armendariz-Picon, T. Damour and V.F. Mukhanov, k - inflation, Phys. Lett. B 458 (1999) 209 [hep-th/9904075].

[18] T. Kobayashi, M. Yamaguchi and J. Yokoyama, G-inflation: Inflation driven by the Galileon field, Phys. Rev. Lett. 105 (2010) 231302 [1008.0603].

[19] C. Deffayet, X. Gao, D. Steer and G. Zahariade, From k-essence to generalised Galileons, Phys. Rev. D 84 (2011) 064039 [1103.3260].

[20] T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: Inflation with the most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511 [1105.5723].

[21] G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363.

[22] R.H. Brandenberger, The Matter Bounce Alternative to Inflationary Cosmology, 1206.4196.

[23] J.-L. Lehners, Ekpyrotic and Cyclic Cosmology, Phys. Rept. 465 (2008) 223 [0806.1245].

[24] T. Qiu, X. Gao and E.N. Saridakis, Towards anisotropy-free and nonsingular bounce cosmology with scale-invariant perturbations, Phys. Rev. D 88 (2013) 043525 [1303.2372].

[25] Y.-F. Cai, D.A. Easson and R. Brandenberger, Towards a Nonsingular Bouncing Cosmology, JCAP 08 (2012) 020 [1206.2382].

[26] V.F. Mukhanov, H. Feldman and R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions, Phys. Rept. 215 (1992) 203.

[27] R.L. Arnowitt, S. Deser and C.W. Misner, The Dynamics of general relativity, Gen. Rel. Grav. 40 (2008) 1997 [gr-qc/0405109].

[28] V. Rubakov, The Null Energy Condition and its violation, Usp. Fiz. Nauk 184 (2014) 137 [1401.4024].

[29] V. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity, Cambridge University Press (6, 2007).

[30] T. Bunch and P. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117.

[31] M. Mylova, O. O¨ zsoy, S. Parameswaran, G. Tasinato and I. Zavala, A new mechanism to enhance primordial tensor fluctuations in single field inflation, JCAP 12 (2018) 024 [1808.10475].

[32] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603].

[33] E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036].

[34] D. Babich, P. Creminelli and M. Zaldarriaga, The Shape of non-Gaussianities, JCAP 08 (2004) 009 [astro-ph/0405356].

[35] J. Fergusson and E. Shellard, The shape of primordial non-Gaussianity and the CMB bispectrum, Phys. Rev. D 80 (2009) 043510 [0812.3413].

[36] PLANCK collaboration, Planck 2018 results. IX. Constraints on primordial non-Gaussianity, 1905.05697.

[37] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP 01 (2007) 002 [hep-th/0605045].

[38] J. Soda, H. Kodama and M. Nozawa, Parity Violation in Graviton Non-gaussianity, JHEP 08 (2011) 067 [1106.3228].

[39] X. Gao, T. Kobayashi, M. Yamaguchi and J. Yokoyama, Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model, Phys. Rev. Lett. 107 (2011) 211301 [1108.3513].

[40] D. Pirtskhalava, L. Santoni, E. Trincherini and P. Uttayarat, Inflation from Minkowski Space, JHEP 12 (2014) 151 [1410.0882].

[41] T. Qiu and Y.-T. Wang, G-Bounce Inflation: Towards Nonsingular Inflation Cosmology with Galileon Field, JHEP 04 (2015) 130 [1501.03568].

[42] M. Libanov, S. Mironov and V. Rubakov, Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis, JCAP 08 (2016) 037 [1605.05992].

[43] T. Kobayashi, M. Yamaguchi and J. Yokoyama, Galilean Creation of the Inflationary Universe, JCAP 07 (2015) 017 [1504.05710].

[44] P. Creminelli, J. Gleyzes, J. Noren˜a and F. Vernizzi, Resilience of the standard predictions for primordial tensor modes, Phys. Rev. Lett. 113 (2014) 231301 [1407.8439].

[45] P. Creminelli, D. Pirtskhalava, L. Santoni and E. Trincherini, Stability of Geodesically Complete Cosmologies, JCAP 11 (2016) 047 [1610.04207].

[46] Y. Cai, Y. Wan, H.-G. Li, T. Qiu and Y.-S. Piao, The Effective Field Theory of nonsingular cosmology, JHEP 01 (2017) 090 [1610.03400].

[47] S. Akama and T. Kobayashi, Generalized multi-Galileons, covariantized new terms, and the no-go theorem for nonsingular cosmologies, Phys. Rev. D 95 (2017) 064011 [1701.02926].

[48] S. Akama and T. Kobayashi, General theory of cosmological perturbations in open and closed universes from the Horndeski action, Phys. Rev. D 99 (2019) 043522 [1810.01863].

[49] M. Fukushima, Y. Misonoh, S. Miyashita and S. Sato, Stable singularity-free cosmological solutions in nonprojectable Hoˇrava-Lifshitz gravity, Phys. Rev. D 99 (2019) 064004 [1812.10295].

[50] N. Afshordi, D.J. Chung and G. Geshnizjani, Cuscuton: A Causal Field Theory with an Infinite Speed of Sound, Phys. Rev. D 75 (2007) 083513 [hep-th/0609150].

[51] S.S. Boruah, H.J. Kim, M. Rouben and G. Geshnizjani, Cuscuton bounce, JCAP 08 (2018) 031 [1802.06818].

[52] J. Quintin, Z. Sherkatghanad, Y.-F. Cai and R.H. Brandenberger, Evolution of cosmological perturbations and the production of non-Gaussianities through a nonsingular bounce: Indications for a no-go theorem in single field matter bounce cosmologies, Phys. Rev. D 92 (2015) 063532 [1508.04141].

[53] Y.-B. Li, J. Quintin, D.-G. Wang and Y.-F. Cai, Matter bounce cosmology with a generalized single field: non-Gaussianity and an extended no-go theorem, JCAP 03 (2017) 031 [1612.02036].

[54] Y.-F. Cai, W. Xue, R. Brandenberger and X. Zhang, Non-Gaussianity in a Matter Bounce, JCAP 05 (2009) 011 [0903.0631].

[55] S. Akama, S. Hirano and T. Kobayashi, Primordial non-Gaussianities of scalar and tensor perturbations in general bounce cosmology: Evading the no-go theorem, Phys. Rev. D 101 (2020) 043529 [1908.10663].

[56] D. Wands, Duality invariance of cosmological perturbation spectra, Phys. Rev. D 60 (1999) 023507 [gr-qc/9809062].

[57] F. Finelli and R. Brandenberger, On the generation of a scale invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase, Phys. Rev. D 65 (2002) 103522 [hep-th/0112249].

[58] R.N. Raveendran, D. Chowdhury and L. Sriramkumar, Viable tensor-to-scalar ratio in a symmetric matter bounce, JCAP 01 (2018) 030 [1703.10061].

[59] R.N. Raveendran and L. Sriramkumar, Viable scalar spectral tilt and tensor-to-scalar ratio in near-matter bounces, Phys. Rev. D 100 (2019) 083523 [1812.06803].

[60] X. Gao, Y. Wang, W. Xue and R. Brandenberger, Fluctuations in a Horava-Lifshitz Bouncing Cosmology, JCAP 02 (2010) 020 [0911.3196].

[61] T. Kobayashi, Generic instabilities of nonsingular cosmologies in Horndeski theory: A no-go theorem, Phys. Rev. D 94 (2016) 043511 [1606.05831].

[62] D. Nandi and L. Sriramkumar, Can a nonminimal coupling restore the consistency condition in bouncing universes?, Phys. Rev. D 101 (2020) 043506 [1904.13254].

[63] X. Gao and D.A. Steer, Inflation and primordial non-Gaussianities of ’generalized Galileons’, JCAP 12 (2011) 019 [1107.2642].

[64] A. De Felice and S. Tsujikawa, Inflationary non-Gaussianities in the most general second-order scalar-tensor theories, Phys. Rev. D 84 (2011) 083504 [1107.3917].

[65] X. Gao, T. Kobayashi, M. Shiraishi, M. Yamaguchi, J. Yokoyama and S. Yokoyama, Full bispectra from primordial scalar and tensor perturbations in the most general single-field inflation model, PTEP 2013 (2013) 053E03 [1207.0588].

[66] F. Arroja and T. Tanaka, A note on the role of the boundary terms for the non-Gaussianity in general k-inflation, JCAP 05 (2011) 005 [1103.1102].

[67] G. Rigopoulos, Gauge invariance and non-Gaussianity in Inflation, Phys. Rev. D 84 (2011) 021301 [1104.0292].

[68] C. Burrage, R.H. Ribeiro and D. Seery, Large slow-roll corrections to the bispectrum of noncanonical inflation, JCAP 07 (2011) 032 [1103.4126].

[69] D. Chowdhury, V. Sreenath and L. Sriramkumar, The tensor bi-spectrum in a matter bounce, JCAP 11 (2015) 002 [1506.06475].

[70] R. Kothari and D. Nandi, B-Mode auto-bispectrum due to matter bounce, JCAP 10 (2019) 026 [1901.06538].

[71] O. Ozsoy, M. Mylova, S. Parameswaran, C. Powell, G. Tasinato and I. Zavala, Squeezed tensor non-Gaussianity in non-attractor inflation, JCAP 09 (2019) 036 [1902.04976].

[72] S. Akama, S. Hirano and T. Kobayashi, Primordial tensor non-Gaussianities from general single-field inflation with non-Bunch-Davies initial states, Phys. Rev. D 102 (2020) 023513 [2003.10686].

[73] W. Xue and B. Chen, alpha-vacuum and inflationary bispectrum, Phys. Rev. D 79 (2009) 043518 [0806.4109].

[74] P.D. Meerburg, J.P. van der Schaar and P.S. Corasaniti, Signatures of Initial State Modifications on Bispectrum Statistics, JCAP 05 (2009) 018 [0901.4044].

[75] P. Meerburg, J.P. van der Schaar and M.G. Jackson, Bispectrum signatures of a modified vacuum in single field inflation with a small speed of sound, JCAP 02 (2010) 001 [0910.4986].

[76] X. Chen, Primordial Non-Gaussianities from Inflation Models, Adv. Astron. 2010 (2010) 638979 [1002.1416].

[77] P. Meerburg, Oscillations in the Primordial Bispectrum I: Mode Expansion, Phys. Rev. D 82 (2010) 063517 [1006.2771].

[78] X. Chen, Folded Resonant Non-Gaussianity in General Single Field Inflation, JCAP 12 (2010) 003 [1008.2485].

[79] P. Meerburg and J.P. van der Schaar, Minimal cut-off vacuum state constraints from CMB bispectrum statistics, Phys. Rev. D 83 (2011) 043520 [1009.5660].

[80] I. Agullo and L. Parker, Non-gaussianities and the Stimulated creation of quanta in the inflationary universe, Phys. Rev. D 83 (2011) 063526 [1010.5766].

[81] A. Ashoorioon and G. Shiu, A Note on Calm Excited States of Inflation, JCAP 03 (2011) 025 [1012.3392].

[82] J. Ganc, Calculating the local-type fNL for slow-roll inflation with a non-vacuum initial state, Phys. Rev. D 84 (2011) 063514 [1104.0244].

[83] J. Ganc and E. Komatsu, Scale-dependent bias of galaxies and mu-type distortion of the cosmic microwave background spectrum from single-field inflation with a modified initial state, Phys. Rev. D 86 (2012) 023518 [1204.4241].

[84] N. Agarwal, R. Holman, A.J. Tolley and J. Lin, Effective field theory and non-Gaussianity from general inflationary states, JHEP 05 (2013) 085 [1212.1172].

[85] J.-O. Gong and M. Sasaki, Squeezed primordial bispectrum from general vacuum state, Class. Quant. Grav. 30 (2013) 095005 [1302.1271].

[86] R. Flauger, D. Green and R.A. Porto, On squeezed limits in single-field inflation. Part I, JCAP 08 (2013) 032 [1303.1430].

[87] A. Aravind, D. Lorshbough and S. Paban, Non-Gaussianity from Excited Initial Inflationary States, JHEP 07 (2013) 076 [1303.1440].

[88] A. Ashoorioon, K. Dimopoulos, M. Sheikh-Jabbari and G. Shiu, Reconciliation of High Energy Scale Models of Inflation with Planck, JCAP 02 (2014) 025 [1306.4914].

[89] S. Brahma, E. Nelson and S. Shandera, Fossilized Gravitational Wave Relic and Primordial Clocks, Phys. Rev. D 89 (2014) 023507 [1310.0471].

[90] S. Bahrami and E.E. Flanagan, Primordial non-Gaussianities in single field inflationary models with non-trivial initial states, JCAP 10 (2014) 010 [1310.4482].

[91] R. Emami, H. Firouzjahi and M. Zarei, Anisotropic inflation with the nonvacuum initial state, Phys. Rev. D 90 (2014) 023504 [1401.4406].

[92] S. Zeynizadeh and A.R. Akbarieh, Higgs Inflation and General Initial Conditions, Eur. Phys. J. C 75 (2015) 355 [1504.00482].

[93] P.D. Meerburg and M. Mu¨nchmeyer, Optimal CMB estimators for bispectra from excited states, Phys. Rev. D 92 (2015) 063527 [1505.05882].

[94] A. Ashoorioon, R. Casadio and T. Koivisto, Anisotropic non-Gaussianity from Rotational Symmetry Breaking Excited Initial States, JCAP 12 (2016) 002 [1605.04758].

[95] A. Shukla, S.P. Trivedi and V. Vishal, Symmetry constraints in inflation, α-vacua, and the three point function, JHEP 12 (2016) 102 [1607.08636].

[96] J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Healthy theories beyond Horndeski, Phys. Rev. Lett. 114 (2015) 211101 [1404.6495].

[97] X. Gao, Unifying framework for scalar-tensor theories of gravity, Phys. Rev. D 90 (2014) 081501 [1406.0822].

[98] M. Giovannini, The refractive index of relic gravitons, Class. Quant. Grav. 33 (2016) 125002 [1507.03456].

[99] Y. Cai, Y.-T. Wang and Y.-S. Piao, Is there an effect of a nontrivial cT during inflation?, Phys. Rev. D 93 (2016) 063005 [1510.08716].

[100] Y. Cai, Y.-T. Wang and Y.-S. Piao, Propagating speed of primordial gravitational waves and inflation, Phys. Rev. D 94 (2016) 043002 [1602.05431].

[101] M. Giovannini, The propagating speed of relic gravitational waves and their refractive index during inflation, Eur. Phys. J. C 78 (2018) 442 [1803.05203].

[102] M. Giovannini, Blue and violet graviton spectra from a dynamical refractive index, Phys. Lett. B 789 (2019) 502 [1805.08142].

[103] A. Ashoorioon, K. Dimopoulos, M. Sheikh-Jabbari and G. Shiu, Non-Bunch–Davis initial state reconciles chaotic models with BICEP and Planck, Phys. Lett. B 737 (2014) 98 [1403.6099].

[104] A. Agrawal, T. Fujita and E. Komatsu, Tensor Non-Gaussianity from Axion-Gauge-Fields Dynamics : Parameter Search, JCAP 06 (2018) 027 [1802.09284].

[105] H.W. Tahara and J. Yokoyama, CMB B-mode auto-bispectrum produced by primordial gravitational waves, PTEP 2018 (2018) 013E03 [1704.08904].

[106] P. Creminelli, A. Nicolis and E. Trincherini, Galilean Genesis: An Alternative to inflation, JCAP 11 (2010) 021 [1007.0027].

[107] V. Belinsky, I. Khalatnikov and E. Lifshitz, Oscillatory approach to a singular point in the relativistic cosmology, Adv. Phys. 19 (1970) 525.

[108] J. Khoury, B.A. Ovrut, P.J. Steinhardt and N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522 [hep-th/0103239].

[109] Y.-F. Cai, R. Brandenberger and P. Peter, Anisotropy in a Nonsingular Bounce, Class. Quant. Grav. 30 (2013) 075019 [1301.4703].

[110] C. Lin, J. Quintin and R.H. Brandenberger, Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe, JCAP 01 (2018) 011 [1711.10472].

[111] S. Nishi and T. Kobayashi, Generalized Galilean Genesis, JCAP 03 (2015) 057 [1501.02553].

[112] H.W. Tahara, S. Nishi, T. Kobayashi and J. Yokoyama, Self-anisotropizing inflationary universe in Horndeski theory and beyond, JCAP 07 (2018) 058 [1805.00186].

参考文献をもっと見る