リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel dynamic critical phenomena induced by superfluidity and the chiral magnetic effect in Quantum Chromodynamics (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel dynamic critical phenomena induced by superfluidity and the chiral magnetic effect in Quantum Chromodynamics (本文)

曽我部, 紀之 慶應義塾大学

2020.03.23

概要

Understanding the phase structure of Quantum Chromodynamics (QCD) at finite temperature and finite baryon chemical potential is a long-standing problem in the standard model of particle physics. So far, in addition to the nuclear liquid-gas critical point, the possible existence of two critical points is theoretically suggested in the QCD phase diagram: one is the high- temperature critical point between the hadron phase and the quark-gluon plasma phase and the other is the high-density critical point between the nuclear and quark superfluid phases. Since these critical points can be po- tentially tested in relativistic heavy-ion collision experiments, theoretical pre- dictions for critical phenomena near these critical points are important. On the other hand, heavy-ion collision experiments have another goal to search for the chiral transport phenomena related to the quantum anomaly. One typical example is the chiral magnetic effect, which is the electric current along the magnetic field. In particular, it is known that the chiral mag- netic effect leads to the generation of a novel density wave called the chiral magnetic wave.

In this thesis, we first construct the low-energy effective field theory near the high-density QCD critical point and study its static and dynamic criti- cal phenomena. We find that the critical slowing down of the speed of the superfluid phonon near the critical point. Furthermore, we show that the dynamic universality class of the high-density critical point is not only differ- ent from that of the high-temperature critical point, but also a new dynamic universality class beyond the conventional classification by Hohenberg and Halperin. Since this new universality class stems from the interplay specific to QCD between the chiral order parameter and the superfluid photon, the observation of the dynamic critical phenomena in the vicinity of the high- density critical point would provide an indirect evidence of the superfluidity in high-density QCD matter.

We next consider the second-order chiral phase transition in massless QCD under an external magnetic field and study the interplay between the dynamic critical phenomena and the chiral magnetic effect. For this purpose, we construct the nonlinear Langevin equations including the effects of the quantum anomaly and perform the dynamic renormalization group analysis. As a result, we show that the presence of the chiral magnetic effect and the resulting chiral magnetic wave change the dynamic universality class of the system from the so-called model E into the model A within the conventional classification. We also find that the speed of the chiral magnetic wave tends to vanish when the phase transition is approached. This phenomenon is char- acterized by the same critical exponents as those for the critical attenuation of the sound wave near the critical points in liquid-gas phase transitions.

参考文献

[1] K. Fukushima and T. Hatsuda, “The phase diagram of dense QCD,” Rept. Prog. Phys. 74, 014001 (2011).

[2] M. Asakawa and K. Yazaki, “Chiral Restoration at Finite Density and Temperature,” Nucl. Phys. A 504, 668 (1989).

[3] T. Hatsuda, M. Tachibana, N. Yamamoto and G. Baym, “New critical point induced by the axial anomaly in dense QCD,” Phys. Rev. Lett. 97, 122001 (2006),

[4] N. Yamamoto, M. Tachibana, T. Hatsuda and G. Baym, “Phase struc- ture, collective modes, and the axial anomaly in dense QCD,” Phys. Rev. D 76, 074001 (2007).

[5] H. Abuki, G. Baym, T. Hatsuda and N. Yamamoto, “The NJL model of dense three-flavor matter with axial anomaly: the low temperature critical point and BEC-BCS diquark crossover,” Phys. Rev. D 81, 125010 (2010).

[6] P. C. Hohenberg and B. I. Halperin, “Theory of Dynamic Critical Phe- nomena,” Rev. Mod. Phys. 49, 435 (1977).

[7] H. Fujii, “Scalar density fluctuation at critical end point in NJL model,” Phys. Rev. D 67, 094018 (2003).

[8] H. Fujii and M. Ohtani, “Sigma and hydrodynamic modes along the critical line,” Phys. Rev. D 70, 014016 (2004).

[9] D. T. Son and M. A. Stephanov, “Dynamic universality class of the QCD critical point,” Phys. Rev. D 70, 056001 (2004).

[10] Y. Minami, “Dynamics near QCD critical point by dynamic renormal- ization group,” Phys. Rev. D 83, 094019 (2011).

[11] K. Rajagopal and F. Wilczek, “Static and dynamic critical phenomena at a second order QCD phase transition,” Nucl. Phys. B 399, 395 (1993).

[12] M. A. Stephanov, “QCD phase diagram and the critical point,” Prog. Theor. Phys. Suppl. 153, 139 (2004) [Int. J. Mod. Phys. A 20, 4387 (2005)]

[13] Brookhaven National Laboratory, “Beam Energy Scan The- ory (BEST) Collaboration,” Retrieved November 4, 2019, from https://www.bnl.gov/physics/best/

[14] S. L. Adler, “Axial vector vertex in spinor electrodynamics,” Phys. Rev. 177, 2426 (1969).

[15] J. S. Bell and R. Jackiw, “A PCAC puzzle: π0 γγ in the σ model,” Nuovo Cim. A 60, 47 (1969).

[16] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, “The effects of topological charge change in heavy ion collisions: “Event by event P and CP violation”,” Nucl. Phys. A 803, 227 (2008).

[17] K. Fukushima, D. E. Kharzeev and H. J. Warringa, “The Chiral Mag- netic Effect,” Phys. Rev. D 78, 074033 (2008).

[18] H. B. Nielsen and M. Ninomiya, “Adler-bell-jackiw Anomaly And Weyl Fermions In Crystal,” Phys. Lett. 130B, 389 (1983).

[19] A. Vilenkin, “Equilibrium Parity Violating Current In A Magnetic Field,” Phys. Rev. D 22, 3080 (1980).

[20] D. E. Kharzeev and H. U. Yee, “Chiral Magnetic Wave,” Phys. Rev. D 83, 085007 (2011).

[21] G. M. Newman, “Anomalous hydrodynamics,” JHEP 0601, 158 (2006).

[22] B. I. Abelev et al. [STAR Collaboration], “Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation,” Phys. Rev. Lett. 103, 251601 (2009).

[23] B. I. Abelev et al. [STAR Collaboration], “Observation of charge- dependent azimuthal correlations and possible local strong parity vi- olation in heavy ion collisions,” Phys. Rev. C 81, 054908 (2010).

[24] B. Abelev et al. [ALICE Collaboration], “Charge separation relative to the reaction plane in Pb-Pb collisions at √sNN = 2.76 TeV,” Phys. Rev. Lett. 110, no. 1, 012301 (2013).

[25] S. A. Voloshin, “Testing the Chiral Magnetic Effect with Central U+U collisions,” Phys. Rev. Lett. 105, 172301 (2010).

[26] W. T. Deng, X. G. Huang, G. L. Ma and G. Wang, “Test the chiral magnetic effect with isobaric collisions,” Phys. Rev. C 94, 041901 (2016).

[27] Q. Li et al., “Observation of the chiral magnetic effect in ZrTe5,” Nature Phys. 12, 550 (2016).

[28] N. Sogabe and N. Yamamoto, “New dynamic critical phenomena in nu- clear and quark superfluids,” Phys. Rev. D 95, no. 3, 034028 (2017).

[29] M. Hongo, N. Sogabe and N. Yamamoto, “Does the chiral magnetic effect change the dynamic universality class in QCD?,” JHEP 1811, 108 (2018).

[30] R. Jackiw, “Field theoretic investigations in current algebra,” in Lectures on Current Algebra and Its Applications, ed. S. B. Treiman, R. Jackiw and D. J. Gross (Princeton University Press, Princeton, 1972).

[31] L. D. Faddeev, “Operator Anomaly for the Gauss Law,” Phys. Lett. B 145, 81 (1984).

[32] P. C. Martin, E. D. Siggia and H. A. Rose, “Statistical Dynamics of Classical Systems,” Phys. Rev. A 8, 423 (1973).

[33] H-K. Janssen, “On a Lagrangean for classical field dynamics and renor- malization group calculations of dynamical critical properties,” Z. Phys. B 23, 377 (1976).

[34] C. De Dominicis, “Dynamics as a substitute for replicas in systems with quenched random impurities,” Phys. Rev. B 18, 4913 (1978).

[35] A. Onuki, “Dynamic equations and bulk viscosity near the gas-liquid critical point,” Phys. Rev. E 55, 403 (1997).

[36] H. D. Politzer, “Reliable Perturbative Results for Strong Interactions?,” Phys. Rev. Lett. 30, 1346 (1973).

[37] D. J. Gross and F. Wilczek, “Ultraviolet Behavior of Nonabelian Gauge Theories,” Phys. Rev. Lett. 30, 1343 (1973).

[38] M. Tanabashi et al. [Particle Data Group], “REVIEW OF PARTICLE PHYSICS,” Phys. Rev. D 98, no. 3, 030001 (2018).

[39] G. ’t Hooft, “Symmetry Breaking Through Bell-Jackiw Anomalies,” Phys. Rev. Lett. 37, 8 (1976).

[40] M. Kobayashi and T. Maskawa, “Chiral symmetry and eta-x mixing,” Prog. Theor. Phys. 44, 1422 (1970).

[41] V. P. Nair, Quantum field theory: A modern perspective (Springer, New York, 2005).

[42] M. G. Alford, K. Rajagopal and F. Wilczek, “Color-flavor locking and chiral symmetry breaking in high density QCD,” Nucl. Phys. B 537, 443 (1999).

[43] L. N. Cooper, “Bound electron pairs in a degenerate Fermi gas,” Phys. Rev. 104, 1189 (1956).

[44] J. Bardeen, L. N. Cooper and J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev. 106, 162 (1957).

[45] D. Bailin and A. Love, “Superfluidity and Superconductivity in Rela- tivistic Fermion Systems,” Phys. Rept. 107, 325 (1984).

[46] M. Iwasaki and T. Iwado, “Superconductivity in the quark matter,” Phys. Lett. B 350, 163 (1995).

[47] M. G. Alford, K. Rajagopal and F. Wilczek, “QCD at finite baryon density: Nucleon droplets and color superconductivity,” Phys. Lett. B 422, 247 (1998).

[48] R. Rapp, T. Schäfer, E. V. Shuryak and M. Velkovsky, “Diquark Bose condensates in high density matter and instantons,” Phys. Rev. Lett. 81, 53 (1998).

[49] T. Schäfer and F. Wilczek, “Continuity of Quark and Hadron Matter,” Phys. Rev. Lett. 82, 3956 (1999).

[50] K. Landsteiner, “Notes on Anomaly Induced Transport,” Acta Phys. Polon. B 47, 2617 (2016).

[51] Y. Hidaka, “Field theory of equilibrium and nonequilibrium systems,” (unpublished).

[52] S. L. Adler and W. A. Bardeen, “Absence of higher order corrections in the anomalous axial vector divergence equation,” Phys. Rev. 182, 1517 (1969).

[53] K. Fujikawa, “Path Integral Measure for Gauge Invariant Fermion The- ories,” Phys. Rev. Lett. 42, 1195 (1979).

[54] D. T. Son and A. R. Zhitnitsky, “Quantum anomalies in dense matter,” Phys. Rev. D 70, 074018 (2004).

[55] M. A. Metlitski and A. R. Zhitnitsky, “Anomalous axion interactions and topological currents in dense matter,” Phys. Rev. D 72, 045011 (2005).

[56] K. Kawasaki, “Kinetic equations and time correlation functions of criti- cal fluctuations,” Ann. Phys. (N.Y.) 61, 1 (1970).

[57] B. I. Halperin, P. C. Hohenberg and E. D. Siggia, “Renormalization- Group Calculations of Divergent Transport Coefficients at Critical Points,” Phys. Rev. Lett. 32, 1289 (1974).

[58] E. D. Siggia, B. I. Halperin and P. C. Hohenberg, “Renormalization- group treatment of the critical dynamics of the binary-fluid and gas- liquid transitions,” Phys. Rev. B 13, 2110 (1976).

[59] H. L. Swinney and D. L. Henry, “Dynamics of Fluids near the Critical Point: Decay Rate of Order-Parameter Fluctuations,” Phys. Rev. A 8, 2586 (1973).

[60] J. Polchinski, “Effective field theory and the Fermi surface,” In *Boul- der 1992, Proceedings, Recent directions in particle theory* 235-274, and Calif. Univ. Santa Barbara - NSF-ITP-92-132 (92,rec.Nov.) 39 p. (220633) Texas Univ. Austin - UTTG-92-20 (92,rec.Nov.) 39 p [hep- th/9210046].

[61] D. B. Kaplan, “Effective field theories,” arXiv:nucl-th/9506035.

[62] D. B. Kaplan, “Five lectures on effective field theory,” arXiv:nucl- th/0510023.

[63] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).

[64] D. Forster, Hydrodynamic fluctuations, broken symmetry, and correla- tion functions (Perseus Books, New York, 1975).

[65] G. F. Mazenko, Nonequilibrium Statistical Mechanics (WiLEY-VCH, Weinheim, 2006).

[66] U. C. Täuber, Critical dynamics: a field theory approach to equilib- rium and non-equilibrium scaling behavior (Cambridge University Press, Cambridge, 2014).

[67] B. I. Halperin, P. C. Hohenberg and Shang-keng Ma, “Renormalization- group methods for critical dynamics: I. Recursion relations and effects of energy conservation,” Phys. Rev. B 10, 139 (1974).

[68] B. I. Halperin, P. C. Hohenberg and Shang-keng Ma, “Renormalization- group methods for critical dynamics: II. Detailed analysis of the relax- ational models,” Phys. Rev. B 13, 4119 (1976).

[69] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications (Cambridge University Press, Cambridge, 1996).

[70] D. T. Son, “Low-energy quantum effective action for relativistic super- fluids,” arXiv:hep-ph/0204199.

[71] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon Press, Oxford, 1980).

[72] I. A. Shushpanov and A. V. Smilga, “Quark condensate in a magnetic field,” Phys. Lett. B 402, 351 (1997).

[73] R. D. Pisarski and F. Wilczek, “Remarks on the Chiral Phase Transition in Chromodynamics,” Phys. Rev. D 29, 338 (1984).

[74] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory (Addison-Wesley, Reading, 1995).

[75] A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2007).

[76] N. Goldenfeld, Lectures on phase transitions and the renormalization group (Addison-Wesley, Boston, 1992).

[77] N. Sogabe and N. Yamamoto, “Triangle Anomalies and Nonrelativis- tic Nambu-Goldstone Modes of Generalized Global Symmetries,” Phys. Rev. D 99, no. 12, 125003 (2019).

[78] I. E. Dzyaloshinskii and G. E. Volovick, “Poisson brackets in condensed matter physics,” Ann. Phys. (N.Y.) 125, 67 (1980).

[79] U. C. Täuber and Z. Rácz, “Critical behavior of O(n)-symmetric systems with reversible mode-coupling terms: Stability against detailed-balance violation,” Phys. Rev. E 55, 4120 (1997).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る