リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pharmacologic conversion of cancer-associated fibroblasts from a protumor phenotype to an antitumor phenotype improves the sensitivity of pancreatic cancer to chemotherapeutics

飯田, 忠 名古屋大学

2023.07.28

概要

主論文の要旨

Pharmacologic conversion of cancer-associated
fibroblasts from a protumor phenotype to an
antitumor phenotype improves the sensitivity of
pancreatic cancer to chemotherapeutics
癌関連線維芽細胞における腫瘍促進性から腫瘍抑制性への
形質変換は膵臓癌の化学療法に対する感受性を改善させる

名古屋大学大学院医学系研究科
病態内科学講座

総合医学専攻

消化器内科学分野

(指導:川嶋 啓揮
飯田 忠

教授)

【緒言】
難治癌と言われる膵癌の特徴に間質線維化とそれに伴う組織硬化がある。組織硬化
による内圧上昇は腫瘍血管を虚脱させ、その結果、抗癌剤の間質浸透と癌細胞への到
達を阻害することが知られている。この癌間質の線維化を形成する上で中心的な役割
を果たすのが癌関連線維芽細胞(CAF)である。癌組織では活性化 CAF がコラーゲン等
の細胞外基質およびそれらを架橋するリシルオキシダーゼ(LOX)ファミリー分 子群
を産生する。コラーゲン等の基質は LOX によって架橋されると直線的な重合線維を
形成し、その結果として組織は硬くなる。組織硬化は内圧の上昇により血管虚脱を誘
導することで抗がん剤の腫瘍内への送達を阻害することが多くの研究により明らかに
なっている。
CAF の分野では平滑筋アクチン(SMA)陽性 CAF に関する研究が主に行われてきた
が、2019 年我々はそれとは異なる新しい CAF 亜群として Meflin 陽性 CAF(SMA 弱陽
性)を同定した。Meflin 欠損マウス及び膵癌自然発症マウス等を用いた解析により、
Meflin 陽性 CAF は従来の癌促進性 SMA 陽性 CAF と異なる癌抑制性 CAF であること
を報告している。また系統追跡実験によりこの Meflin 陽性 CAF は癌の発育とともに
癌促進性 SMA 陽性 CAF へと形質転換することも明らかになっている。今回我々はこ
れまで不明であった Meflin の機能に加え、癌間質における Meflin の発現と化学療法
感受性との関連性を検討した。さらに臨床応用を見据え CAF における Meflin の発現
上昇を誘導する化合物をスクリーニングし、得られた化合物の有用性を検証した。
【方法】
Meflin の機能
免 疫 沈 降 法 と 質 量 分 析 を 組 み 合 わ せ た 手 法 で Meflin の 結 合 分 子 を 探 索 し 、 次 に
Meflin の結合による結合分子の機能の変化を検討した。
Meflin の発現と化学療法感受性との関連性
当院で化学療法を受けた膵癌患者から採取した EUS-FNA 検体における Meflin の発
現と奏効率(ORR)との関連性を評価した。さらに野生型マウス、Meflin 遺伝子欠損マ
ウスそれぞれにマウス膵癌細胞株(mT5)を皮下移植し、その後抗がん剤(Gem)による
治療を行い腫瘍径の比較をした。次に CAF における Meflin の発現を誘導するために、
Meflin をコードするセンダイウイルス(SeV)ベクターを作製した。野生型マウスの皮
下腫瘍(mT5)に SeV-Meflin を感染させ腫瘍内で Meflin の過剰発現が誘導させること
で抗がん剤への感受性の変化を評価した。
Meflin の発現上昇を誘導する化合物のスクリーニングと有用性の検証
これまでに Meflin の発現上昇を誘導する物質としてビタミン D を同定している。
ビタミン D が核内受容体に作用する分子であることからヒト膵癌 CAF を用いて同受
容体のリガンドライブラリーをスクリーニングし、マウス膵癌(mT5)皮下移植モデル

-1-

を使用しその化合物の効果を評価した。
【結果】
Meflin の機能
Meflin の結合分子を探索したところ、LOX を同定した。組換え分子を用いた実験に
より、Meflin-LOX 間結合は直接的な結合であり、また Meflin は LOX のコラーゲン架
橋活性を阻害することが判明した(Fig1 a-e)。LOX は一般的にコラーゲン等の細胞外
基質の架橋と組織硬化を引き起こす酵素と言われており、その活性を抑制することが
示唆された。
Meflin の発現と化学療法感受性との関連性
膵癌 EUS-FNA 検体における Meflin 高発現群は低発現群に比べ有意に奏効率が高か
った(Fig2 a,b)。また、皮下移植マウスモデルを使用した実験では、野生型マウスと比
べ Meflin 欠失マウスでは有意に抗癌剤感受性が減弱した。また興味深いことに腫瘍組
織を評価すると Meflin 遺伝子欠失マウスに移植した mT5 腫瘍は、腫瘍血管内径およ
び CD31 陽性内皮細胞領域が野生型マウスに比べ減少した(Fig2 c-f)。SeV ベクターを
用いた実験では Meflin 過剰発現が誘導された腫瘍では腫瘍血管径の有意な増加およ
び抗癌剤に対する感受性が増強した(Fig3 a-f)。このことは、腫瘍における Meflin の発
現が腫瘍の抗癌剤感受性に関与していることを示している。
Meflin の発現上昇を誘導する化合物のスクリーニングと有用性の検証
ビタミン D 誘導体よりも Meflin の発現を誘導する物質として AM580 を同定した。
さらに、AM580 と同時に開発され、急性前骨髄球性白血病(APL)に対して認可されて
いる AM80(一般名:タミバロテン)も AM580 と同様の効果を示すことを見出した(Fig4
a)。皮下移植(mT5)マウスモデルで検証したところ、AM80 単剤投与は抗腫瘍効果を
示さなかったが、CAF における Meflin の発現上昇、腫瘍血管面積の増加(Fig4 b-g)、
コラーゲン架橋の低下によるコラーゲン線維の配向の変化、組織の軟化が認められた
(Fig1 f-i)。さらに AM80 と抗がん剤(Gem)の併用を行ったところ、抗がん剤単独と比
較して有意に腫瘍内抗がん剤濃度の上昇と腫瘍縮小効果が示された(Fig5 a-h)。また、
この効果が Meflin 遺伝子欠損マウスでは確認されなかったことから、AM80 は Meflin
を介してこの効果をもたらしている可能性が示唆された(Fig6 a-h)。
【考察】
今回の研究では、まず Meflin の機能が LOX のコラーゲン架橋活性を抑制すること
が示された。LOX は組織硬度、間質内圧等の腫瘍間質の物理学的特性に関する重要な
調節因子であり、Meflin 高発現の腫瘍では組織の軟化、腫瘍血管の拡張、抗がん剤の
送達が改善される可能性が示唆された。そこで膵癌患者の臨床検体と様々なマウスモ
デルを用い検証した結果、膵癌の CAF における Meflin の発現上昇は腫瘍血管の拡張、

-2-

化学療法への感受性を増強させることを見出した。これらの実験をふまえ CAF におけ
るメフリンの発現を誘導する化合物のスクリーニングを行い、Am80 の同定へとつな
がった。Am80 投与は腫瘍内 CAF における Meflin の発現上昇をもたらし、コラーゲン
の配向の改善、組織の軟化、腫瘍血管の拡張の結果、化学療法に対する感受性改善が
示された。現在、米国では、AM80 と同様に Meflin の発現を誘導する化合物であるビ
タミン D と既存の化学療法とを組み合わせた治験が複数進行中である。それらの結果
との関連性が期待されると同時に、現在 AM80 を用いた化学療法との併用治験が実施
されており今後本研究結果をうけて CAF を標的とした治療法の開発がすすむことが
期待される。
【結論】
CAF における Meflin の発現が化学療法に対する腫瘍感受性を改善することを示した。

-3-

Figure 1. Meflin was involved in the regulation of Lox activity and collagen remodeling.
(a) The indicated plasmids were transfected into HEK293 cells, followed by IP with anti-HA antibodis and WB analysis. Lox
coprecipitated with HA-Meflin (asterisk). mMeflin, mouse Meflin; mLox, mouse Lox; SS, signal sequence; TCL, total cell lysate.
(b) Interaction of endogenous Meflin and Lox proteins. Cell lysates prepared from the fHDF/TERT166 fibroblast cell line (left) or
primary cultured human fibroblasts (NHDFs, right) were immunoprecipitated with anti-Meflin antibodies, followed by analysis of
eluates by WB with the indicated antibodies. Lox proteins coprecipitated with Meflin (asterisk).
(c) Primary structure of human Meflin (top) and mouse Lox (middle). Lox comprises an amino-terminal SS, a pro-sequence, and a
catalytic domain (CD). (Bottom) Construct encoding the CD of Lox with an SS at the amino terminus. Dashed line: protein domains
responsible for the Lox/Meflin interaction.
(d) The indicated plasmids were cotransfected into 293FT cells, followed by IP with anti-HA antibodies and WB analysis. Meflin
interacted with the CD of mLox (asterisk).
(e) Conditioned medium from control Flp-In-293 cells or Flp-In-293 cells stably expressing mMeflin was mixed with recombinant
Loxl2 (0.25 and 0.5 µg/mL), followed by measurement of hydrogen peroxide using a fluorometric-based method. (Left) WB analysis
of Meflin expression in Flp-In-293 cells. RFU, relative fluorescence unit.
(f, g) Measurement of collagen alignment in the stroma of subcutaneous mT5 tumors developed in mice by SHG microscopy. Eight
to sixteen images from tissue sections of control tumors and tumors treated with Am80 were analyzed. Representative images (f) and
quantification of collagen alignment (g).
(h, i) Measurement of the stiffness of mT5 tumors developed in control mice (n = 14) and those treated with Am80 (n = 16). The
Young's modulus of the flat surfaces of tumors contacting the fascia of the panniculus carnosus muscle were measured (h). One or
two points were selected in each tumor, and each point was measured more than 5 times; quantification was performed (i).

-4-

Figure 2. Numbers of Meflin+ stromal cells correlated with response of patients with PDAC to chemotherapeutics and tumor vessel
area.
(a) Representative images of Meflin ISH analysis on formalin-fixed and paraffin-embedded (FFPE) sections of biopsy samples
obtained from patients with PDAC by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). Cases with 30% or more of
stromal cells positive for Meflin were classified as Meflin high (cases 1 and 2, upper panel), whereas others were classified as Meflin
low (cases 3 and 4, lower panel). Boxed areas were magnified in adjacent panels. Red arrows indicate Meflin+ CAFs. Black arrows
indicate CAFs weakly positive for Meflin. T, tumor cells.
(b) Waterfall plots depicting tumor responses of patients with PDAC (N = 33), who received Gem, nabPTX plus Gem (GnP), or
FOLFIRINOX, evaluated by the Response Evaluation Criteria in Solid Tumors (RECIST) criteria. The table in the right panel shows
the numbers of patients classified by their response status and Meflin expression. The results of statistical analysis are also shown.
(c) WT and Meflin-KO female mice at postnatal day (P) 42 were subcutaneously transplanted with mT5 mouse PDAC cells (1 × 106
cells/mouse), followed by i.p. administration of Gem or saline three times every 2 days and sacrifice at day 25.
(d) Time course of the volumes of tumors developed in WT and Meflin-KO mice administered saline or Gem (left panel) and
quantification of tumor weight at the end of experiment (right panel).
(e) Representative images of tissue sections of WT and Meflin-KO mT5 tumors stained for CD31. Brown color denotes positivity.
IHC, immunohistochemistry.
(f) Schematic illustration depicting the method of quantification of CD31-stained blood vessel area and lumen of mT5 tumors in WT
and Meflin-KO mice, performed using ImageJ software (left panel). Quantification data are shown in middle and right panels.

-5-

Figure 3. SeV-mediated transduction of Meflin induced increases in tumor vessel area and sensitivity to Gem.
(a, b) Recombinant SeV encoding DasherGFP (DGFP) or mouse Meflin and DGFP (mMeflin/DGFP) was used to infect mouse MSCs,
followed by western blot (WB) analysis with the indicated antibodies (a) and quantitative PCR (qPCR) for the indicated genes (b).
Mr, molecular marker.
(c) WT female mice (P42) were subcutaneously transplanted with mT5 mouse PDAC cells (1 × 106 cells/mouse), followed by
intratumoral injection of the indicated SeV (3 × 107 CIU) at day 12 and sacrifice at day 19.
(d) Observation of GFP fluorescence in frozen sections prepared from mT5 tumors infected with SeV encoding DGFP (left) and
Meflin/DGFP (right) (upper panel). FFPE sections were also obtained from tumors and stained for Meflin (Islr) and α-SMA (Acta2)
by ISH (middle and lower panels). Arrows indicate Meflin+ or Acta2+ CAFs.
(e–h) mT5 tumors transplanted into WT female mice (P42) were allowed to grow until reaching 50–100 mm3 in volume. Mice were
then injected with SeV encoding DGFP or Meflin/DGFP three times every 4 days and sacrificed on day 17 (e). Tumor volume was
measured (f), and IHC for CD31 was performed to quantify the tumor vessel lumen and CD31+ area (g, h).
(i, j) mT5 tumors transplanted into WT female mice (P42) were allowed to grow until reaching 50–100 mm3 in volume (day 0). Mice
were then injected with SeV encoding DGFP or Meflin/DGFP three times every 4 days (days 1, 5, and 9). The mice were i.p.
administered Gem four times on days 5, 8, 11, and 14 and then sacrificed on day 17 (i). Tumor volume was measured (j).

-6-

Figure 4. Effects of Am80 administration on the expression of Meflin in CAFs and on tumor vessel area in a PDAC xenograft
mouse model.
(a) Primary cultured mouse MSCs were plated in the presence of DMSO, ATRA, Am80, and AM580 for 48 h, and qPCR of the
indicated genes was performed.
(b–e) WT female mice (P42) were subcutaneously transplanted with mT5 mouse PDAC cells (1 × 106 cells/mouse), followed by oral
administration of Am80 (3 mg/kg, 0.5% carboxymethylcellulose [CMC] solution) every day for 14 days (b). Body weights of mice
(c) and tumor volumes (d) were measured during the observation period. (e) Tumor weight on the day of sacrifice (day 22).
(f, g) Tissue sections prepared from control mT5 tumors (left) and those administered Am80 (right) were examined for Meflin and αSMA expression by ISH (f) and for CD31 expression by IHC (g). Meflin and α-SMA expression levels (f) and tumor vessel lumen
and CD31+ areas (g) were calculated. For quantification of ISH signals, the number of dots per high-power (400×) microscopic field
(HPF) was counted, and 20 HPFs randomly selected from 5 animals were evaluated for each group. Asterisks denote tumor cells that
were negative for Meflin and α-SMA expression.

-7-

Figure 5. Am80 administration improved tumor sensitivity to Gem and induced Meflin expression in CAFs in a subcutaneous PDAC
xenograft mouse model.
(a) WT female mice (P42) were subcutaneously transplanted with mT5 mouse PDAC cells (1 × 106 cells/mouse) on day 0, followed
by oral administration of Am80 from day 8 for 16 consecutive days. The mice were administered Gem from day 15 three times every
3 days and sacrificed on day 24.
(b–d) Measurement of the body weights of mice (b) and tumor volumes (c) during the observed period and of tumor weights on day
24 (d).
(e) Representative images of H&E-stained tissue sections of tumors prepared from the indicated groups. Boxed regions are magnified
in insets. Arrows denote necrotic cells with pyknotic nuclei. The numbers of necrotic cells were counted and quantified in the graph
shown in the right panel. Twenty-five images obtained from five tumors per group using a 20× objective lens were analyzed and
quantified.
(f, g) Tissue sections of tumors from the indicated groups were stained for Meflin and α-SMA by ISH (f), followed by quantification
of total dot numbers (g). Open and solid arrowheads denote Meflin+ and α-SMA+ CAFs, respectively.
(h) Quantification of dFdC (Gem) delivered to tumors in the indicated groups after administration of Gem three times. Lysates
prepared from mT5 tumors treated with Gem (n = 17) and Gem plus Am80 (n =17) were added with stable isotope-labeled dFdC
(internal control) subjected to liquid chromatography-mass spectrometry analysis, followed by quantification of dFdC and the internal
control. The data are expressed as relative ratios of dFdC to the internal control.

-8-

Figure 6. Increased tumor chemosensitivity by Am80 administration was mediated by alterations in Meflin expression in CAFs.
(a) Meflin-KO female mice (P42) were subcutaneously transplanted with mT5 mouse PDAC cells (1 × 106 cells/mouse) on day 0,
followed by oral administration of Am80 from day 8 for 16 consecutive days. Mice were administered Gem from day 15 three times
every 3 days and sacrificed on day 24.
(b–d) Measurement of the body weights of mice (b) and tumor volumes (c) during the observation period, and tumor weights on day
24 (d).
(e, f) Representative images of H&E-stained tissue sections of tumors prepared from the indicated groups (e). Boxed regions are
magnified in insets. Arrows denote necrotic cells with pyknotic nuclei. The numbers of necrotic cells were counted and quantified in
the graph shown in (f).
(g, h) Tissue sections of tumors from the indicated groups were stained for α-SMA by ISH (g), followed by quantification of the total
dot numbers (h).

-9-

この論文で使われている画像

参考文献

1. Apte MV, Park S, Phillips PA, Santucci N, Goldstein D, Kumar RK, et al. Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas.

2004;29:179–87.

2. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A

framework for advancing our understanding of cancer-associated fibroblasts. Nat

Rev Cancer. 2020;20:174–86.

3. Neesse A, Bauer CA, Öhlund D, Lauth M, Buchholz M, Michl P, et al. Stromal

biology and therapy in pancreatic cancer: ready for clinical translation? Gut

2019;68:159–71.

4. Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J

Exp Med. 2014;211:1503–23.

5. Gieniec KA, Butler LM, Worthley DL, Woods SL. Cancer-associated fibroblasts—

heroes or villains? Br J Cancer. 2019;121:293–302.

6. Kobayashi H, Enomoto A, Woods SL, Burt AD, Takahashi M, Worthley DL. Cancerassociated fibroblasts in gastrointestinal cancer. Nat Rev Gastroenterol Hepatol.

2019;16:282–95.

7. Miyai Y, Esaki N, Takahashi M, Enomoto A. Cancer-associated fibroblasts that

restrain cancer progression: hypotheses and perspectives. Cancer Sci.

2020;111:1047–57.

8. Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancerassociated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev.

2016;99:186–96.

9. Mezawa Y, Orimo A. The roles of tumor-and metastasis-promoting carcinomaassociated fibrolasts in human carcinomas. Cell Tissue Res. 2016;365:675–89.

10. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al.

Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell.

2014;25:719–34.

11. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al.

Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.

12. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, et al. Stromal response to

Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci

USA. 2014;111:E3091–100.

13. Bhattacharjee S, Hamberger F, Ravichandra A, Miller M, Nair A, Affo S, et al. Tumor

restriction by type I collagen opposes tumor-promoting effects of cancerassociated fibroblasts. J Clin Investig. 2021;131:e146987.

14. Chen Y, Kim J, Yang S, Wang H, Wu CJ, Sugimoto H, et al. Type I collagen deletion

in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer. Cancer Cell. 2021;39:548–65.

15. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-induced JAK/STAT

signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic

ductal adenocarcinoma. Cancer Discov. 2019;9:282–301.

16. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al. Crossspecies single-cell analysis of pancreatic ductal adenocarcinoma reveals antigenpresenting cancer-associated fibroblasts. Cancer Discov. 2019;9:1102–23.

17. Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al.

Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic

cancer. J Exp Med. 2017;214:579–96.

18. Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated

paracrine interaction for pancreatic cancer therapy and monitoring. Nature.

2019;569:131–5.

19. Nagathihalli NS, Castellanos JA, VanSaun MN, Dai X, Ambrose M, Guo Q, et al.

Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of

pancreatic intraepithelial neoplasia and cancer cells. Oncotarget. 2016;7:65982–92.

20. Mizutani Y, Kobayashi H, Iida T, Asai N, Masamune A, Akitoshi H, et al. Meflinpositive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer

Res. 2019;79:5367–81.

21. Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, et al. Identification of Meflin as a potential marker for mesenchymal stromal cells. Sci Rep.

2016;6:22288.

22. Takahashi M, Kobayashi H, Mizutani Y, Hara A, Iida T, Miya Y, et al. Roles of the

mesenchymal stromal/stem cell marker Meflin/Islr in cancer fibrosis. Front Cell

Dev Biol. 2021;9:749924.

23. Hara A, Kato K, Ishihara T, Kobayashi H, Asai N, Mii S, et al. Meflin defines

mesenchymal stem cells and/or their early progenitors with multilineage differentiation capacity. Genes Cells. 2021;26:495–512.

24. Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, et al. Interand intra-tumoural heterogeneity in cancer-associated fibroblasts of human

pancreatic ductal adenocarcinoma. J Pathol. 2019;248:51–65.

25. Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M, Yang H, et al.

GM-CSF mediates mesenchymal–epithelial cross-talk in pancreatic cancer. Cancer

Discov. 2016;6:886–99.

26. Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, et al. Bone marrowderived myofibroblasts contribute to the mesenchymal stem cell niche and

promote tumor growth. Cancer Cell. 2011;19:257–72.

27. Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of

human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.

28. Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al.

Trp53R172H and KrasG12D cooperate to promote chromosomal instability and

widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell.

2005;7:469–83.

29. Zhang D, Li L, Jiang H, Li Q, Wang-Gillam A, Yu J, et al. Tumor-stroma IL1β-IRAK4

feedforward circuitry drives tumor fibrosis, chemoresistance, and poor prognosis

in pancreatic cancer. Cancer Res. 2018;78:1700–12.

30. Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al.

Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse

model of pancreatic cancer. Science. 2009;324:1457–61.

31. Sherman MH, Yu RT, Engle DD, Ding N, Atkins AR, Tiriac H, et al. Vitamin D

receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014;159:80–93.

32. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D,

et al. ATRA mechanically reprograms pancreatic stellate cells to suppress matrix

remodelling and inhibit cancer cell invasion. Nat Commun. 2016;7:12630.

33. Kocher HM, Basu B, Froeling FEM, Sarker D, Slater S, Carlin D, et al. Phase I clinical

trial repurposing all-trans retinoic acid as a stromal targeting agent for pancreatic

cancer. Nat Commun. 2020;11:4841.

34. Kagechika H, Kawachi E, Hashimoto Y, Shudo K. New type inducers of differentiation of human HL-60 promyelocytic leukemia cells. Terephthalic anilides.

Chem Pharm Bull. 1984;32:4209–12.

35. Kagechika H. Novel synthetic retinoids and separation of the pleiotropic retinoidal activities. Curr Med Chem. 2002;9:591–608.

36. Tobita T, Takeshita A, Kitamura K, Ohnishi K, Yanagi M, Hiraoka A, et al. Treatment

with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed

from complete remission induced by all-trans retinoic acid. Blood.

1997;90:967–73.

37. Hara A, Kobayashi H, Asai N, Saito S, Higuchi T, Kato K, et al. Roles of the

mesenchymal stromal/stem cell marker Meflin in cardiac tissue repair and the

development of diastolic dysfunction. Circ Res. 2019;125:414–30.

38. Kobayashi H, Gieniec KA, Wright JA, Wang T, Asai N, Mizutani Y, et al. The balance

of stromal BMP signaling mediated by GREM1 and ISLR drives colorectal carcinogenesis. Gastroenterology. 2021;160:1224–39.

39. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT, et al. Matrix crosslinking

forces tumor progression by enhancing integrin signaling. Cell.

2009;139:891–906.

40. Barker HE, Cox TR, Erler J. The rationale for targeting the LOX family in cancer. Nat

Rev Cancer. 2012;12:540–52.

41. Le Calvé B, Griveau A, Vindrieux D, Maréchal R, Wiel C, Svrcek M, et al. Lysyl

oxidase family activity promotes resistance of pancreatic ductal adenocarcinoma

to chemotherapy by limiting the intratumoral anticancer drug distribution.

Oncotarget. 2016;7:32100–12.

42. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP promotes immunosuppression

by cancer-associated fibroblasts in the tumor microenvironment via

STAT3–CCL2 signaling. Cancer Res. 2016;76:4124–35.

43. Puré E, Blomberg R. Pro-tumorigenic roles of fibroblast activation protein in

cancer: back to the basics. Oncogene. 2018;37:4343–57.

44. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle.

Immunity. 2013;39:1–10.

45. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from

tumor initiation to metastatic progression. Genes Dev. 2018;32:1267–84.

46. Hashimoto Y, Kagechika H, Shudo K. Expression of retinoic acid receptor genes

and the ligand-binding selectivity of retinoic acid receptors (RAR’s). Biochem

Biophys Res Commun. 1990;166:1300–7.

47. Tebben PJ, Singh RJ, Kumar R. Vitamin D-mediated hypercalcemia: mechanisms,

diagnosis, and treatment. Endocr Rev. 2016;37:521–47.

48. Klemann C, Raveney BJE, Klemann AK, Ozawa T, von Hörsten S, Shudo K, et al.

Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am J Pathol. 2009;174:2234–45.

49. Takaomi S, Kuwano T, Nakao S, Iida S, Ishida T, Komatsu H, et al. Antimyeloma

effects of a novel synthetic retinoid Am80 (Tamibarotene) through inhibition of

angiogenesis. Leukemia. 2005;19:901–9.

50. Zhang K, Zhang Y, Gu L, Lan M, Liu C, Wang M, et al. Islr regulates canonical Wnt

signaling-mediated skeletal muscle regeneration by stabilizing Dishevelled-2 and

preventing autophagy. Nat Commun. 2018;9:129.

51. Xu J, Tang Y, Sheng X, Tian Y, Deng M, Du S, et al. Secreted stromal protein ISLR

promotes intestinal regeneration by suppressing epithelial Hippo signaling.

EMBO J. 2020;39:e103255.

Oncogene (2022) 41:2764 – 2777

T. Iida et al.

2777

ACKNOWLEDGEMENTS

We thank David Tuveson (Cold Spring Harbor Laboratory) and Chang-il Hwang (UC

Davis College of Biological Sciences) for providing the mouse PDAC cell line mT5;

Kohji Kusano (ID Pharma Co., Ltd.) for generating recombinant Sendai virus; Shuzo

Watanabe, Kaoru Shimada (RaQualia Pharma Inc.), and Hisao Ekimoto (TMRC Co., Ltd)

for helpful discussions on Am80; Kentaro Taki (Nagoya University) for help with mass

spectrometry; and Kozo Uchiyama and Kaori Ushida (Nagoya University) for technical

assistance. This work was supported by a Grant-in-Aid for Scientific Research (B)

(grant nos. 18H02638 to AE and 20H03467 to MT) commissioned by the Ministry of

Education, Culture, Sports, Science and Technology of Japan; Nagoya University

Hospital Funding for Clinical Research (to AE); AMED-CREST (Japan Agency for

Medical Research and Development, Core Research for Evolutional Science and

Technology; grant nos. JP20gm0810007h0105 and JP20gm1210009s0102 to AE); and

the Project for Cancer Research and Therapeutic Evolution (P-CREATE) from AMED

(grant nos. JP20cm0106377h0001 to AE and JP21cm0106704h0002 to YM).

AUTHOR CONTRIBUTIONS

TIi designed and performed the experiments, analyzed the data, and wrote the paper.

YM and NE designed and performed the experiments and analyzed the data. SMP

and BMB performed SHG analysis. LW performed the mass spectrometric analysis.

KKu performed the measurement of intratumoral concentrations of dFdC. KKa, AM,

Oncogene (2022) 41:2764 – 2777

TIs, EO, and HK provided the clinical samples and intellectual input. SI and HH

assisted with the analysis of tumor stiffness. SM and YS assisted with histological

analysis. HK, YH, MF, and MT directed the project and provided intellectual input. AE

directed the project and wrote the paper.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41388-022-02288-9.

Correspondence and requests for materials should be addressed to Atsushi

Enomoto.

Reprints and permission information is available at http://www.nature.com/

reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims

in published maps and institutional affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る