リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「〈Original Paper〉SWATH質量分析法によるマンゴー葉抽出物の抗炎症作用の分子機構の解明の試み」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

〈Original Paper〉SWATH質量分析法によるマンゴー葉抽出物の抗炎症作用の分子機構の解明の試み

吉元 健人 黒川 萌音 近江 響 川端 里佳 皆本 裕貴 岸田 邦博 松川 哲也 永井 宏平 近畿大学

2022.03.31

概要

[要旨] 機能性食品成分は, 標的分子を事前に予測することが困難であり, また複数の成分が異なる標的に作用する可能性があることから, 機能性発揮の分子機構を完全に解明することは困難である. そのため, 食品成分が細胞に与える影響を包括的にとらえる手法の開発が求められている. 本研究では, まず, 大腸菌由来リポ多糖 (LPS) で活性化したマクロファージ様Raw264.7 細胞を用いて, マンゴー葉のメタノール抽出物 (MLE) の抗炎症作用の詳細を解析した. さらに, 細胞内のタンパク質変動をSWATH質量分析法で解析することで, MLEの抗炎症作用の分子機構を解明できるか試みた. 1.0 ng/mL のLPS で活性化したRaw264.7 細胞にMLE を添加すると, 培養上清中のNO とIL-6 濃度はMLE 0.56 μg/mL で, TNFα 濃度は2.3 μg/mL で有意に減少し, 18 μg/mL でいずれの物質も検出限界以下にまで低下した. 同様に, iNOS の発現量はMLE 2.5 μg/mL で, TNFα, IL-6, IL-1β の発現量は10 μg/mL で有意に減少し, 40 μg/mLで, いずれの遺伝子の発現量もLPS 未処理のレベルにまで低下した. 順相クロマトグラフィーでMLE を分画したところ, NO 産生抑制作用は濃縮されず, 全ての画分に弱い作用が確認された. ここから, MLE 中の複数の成分が複数の受容体に作用することで, 協奏的に強い抗炎症作用を呈すると考えられた. SWATH 質量分析法で得たタンパク質定量データを主成分判別分析 (PC-DA) にかけると, 未処理の細胞 (LPS-群), 10 ng/mLのLPSで刺激した細胞 (LPS+群), LPS に加えて, 10 μg/mL のMLE で処理した細胞 (MLE 群) の3 群に明確に分離され, それぞれ特徴的なタンパク質プロファイルを有していることが示された. その中でも, 細胞の恒常性を保ち, 炎症を収束へと導くAnnexinA1 やAnnexin A2 がMLE 群で増加していた. また, LPS-activated MAPK signaling 経路に関連する因子に注目すると,LPS+群に比べて, MLE 群では, 抗炎症に関わるSQSTM1 が増加し, 経路の中心因子であるp38MAPK や, ERK1/2 が減少していた. これらの因子がMLE の抗炎症作用と関わっていると考えられた.[Abstract] It is often difficult to fully elucidate the molecular mechanism of functional foods, since foods generally contain multiple functional substances, which may act on different targets. Therefore, there is a need to develop a method that comprehensively captures the effects of food ingredients on cells. In this study, we first analyzed the details of the anti-inflammatory effect of mango leaf ethanol extract (MLE) using macrophage-like Raw264.7 cells activated with lipopolysaccharide (LPS). Secondary, we attempted to elucidate the molecular mechanism of the anti-inflammatory effect of MLE by analyzing intracellular protein fluctuations by SWATH mass analysis. Addition of MLE to Raw264.7 cells activated with 1.0 ng/mL LPS significantly reduced the concentrations of NO and IL-6 in the culture supernatant at 0.56 μg/mL, and that of TNFα at 2.3 μg/mL. All of them decreased to below the detection limit at 18 μg/mL of MLE. Similarly, the expression level of iNOS was significantly reduced at 2.5 μg/mL of MLE, and that of TNFα, IL-6, and IL-1β was at 10 μg/mL. At 40 μg/mL of MLE, the expression level of all genes was reduced to the level of LPS-untreated cells. When MLE was fractionated by normal phase chromatography, the NO production inhibitory effect was not concentrated, and weak effects were detected on all fractions. This indicated that multiple components in MLE may act on multiple receptors to exert a strong anti-inflammatory effect. When the quantitative data obtained by SWATH-MS was analyzed by PC-DA, it was clearly distinguished into three groups, untreated cells (LPS -), those treated with 10 ng/mL LPS (LPS+), and those treated with LPS and 10 μg/mL MLE (MLE), indicating that the three groups possess distinctive proteome profiles. Among them, Annexin A1 and Annexin A2, which have been reported to maintain cell homeostasis and contribute to the termination of inflammation, were increased in the MLE group. Focusing on the factors related to the LPS-activated MAPK signaling pathway, SQSTM1 involved in anti-inflammation increased, and p38MAPK and ERK1/2, which are the central factors of the pathway, decreased. These factors were thought to be involved in the anti-inflammatory effec of MLE.

参考文献

(1)

小川佳宏 真鍋一郎 編 『慢性炎症と生活習慣病』2013

(2)

Hotamisligil, G.S. (2006) Inflammation and metabolic disorders. Nature.444, 860-867.

(3)

Huang, S., Rutkowsly, J.M., Snodgrass, R.G., Ono-Moore, K.D., Schneider, D.A. Newman, J.W., Adams,

S.H., Hwang, D.H. (2012) Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways.

J Lipid Res. 53, 2002-2013.

(4)

Itoh, K., Murata, K., Nakagaki, Y., Shimizu, A., Takata, Y., Shimizu, K., Matsukawa, T., Kajiyama, S.,

Fumoro, M., Iijima, M., Matsuda, H. (2016) A pancreatic lipase inhibitory activity by mango

(Mangifera indica) leaf methanolic extract. J. Plant Stud. 5, 72-78.

(5)

Itoh, K., Murata, K., Sakaguchi, N., Akai, K., Yamaji, T., Shimizu, K., Isaki, K., Matsukawa T.,

Kajiyama, S., Fumuro, M., Iijima M., Matsuda, H. (2017) Inhibition of advanced glycation end

products formation by Mangifera indica leaf extract. J. Plant Stud. 6, 102-107.

(6)

Itoh, K., Matsukawa, T., Minami K., Okamoto, M., Tomohiro, N., Shimizu, K., Kajiyama, S., Endo, Y.,

Matsuda, H., Shigeoka, S. (2020) Inhibitory effect of several Mangifera indica cultivar leaf extracts on

the formation of advanced glycation end products. J. Plant Stud. 9, 33-38.

(7)

Itoh, K., Matsukawa, T., Okamoto, M., Minami, K., Tomohiro, N., Shimizu, K., Kajiyama, S., Endo, Y.,

Matsuda, H., Shigeoka, S. (2020) In vitro Antioxidant Activit y of Mangifera indica Leaf Extracts. J.

Plant Stud. 9, 39-45.

(8)

Lu, Y.C., Yeh, W.C., Ohashi, P.S. (2008) LPS/TLR4 signal transduction pathway. Cytokine. 42, 145-151.

(9)

Anjo, S.I., Santa, C., Mandas, B. (2018) SWATH-MS as a tool for biomarker discovery: From basic

research to clinical applications. Proteomics. 17, 3-4.

(10) 太田汐海, 西端智也, 山脇瑳也花, 淡路智貴, 大世渡勇紀, 坂上綾花, 岸田邦博, 永井宏平. (2018)

SWATH 質量分析法による高脂肪食誘導肥満マウスの肝臓の定量プロテオミクス. 近畿大学生物理

工学部紀要. 42, 15-31.

(11) Marcocci, L., Maguire, J.J., Droy-Lefaix, M.T., Packer, L. (1994) The nitric oxide-scavenging properties of

Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 201, 748-55.

(12) 大嶋 萌永, 鈴木 絵莉花, 井原 勇人, 永井 宏平, 岸田 邦博. (2021) 高フルクトース食に含まれる

油脂の違いがラット脂質代謝および肝臓タンパク質発現プロファイルに与える影響の比較. 日本

栄養・食糧学会誌 74, 155-169.

(13) Zhao, Y., Wang, W., Wu, X., Ma, X., Qu, R., Chen, X., Liu, C., Liu, Y., Wang, X., Yan P., Zhang H., Pan J.,

Li, W. (2017) Mangiferin antagonizes TNF-α-mediated inflammatory reaction and protects against

16

17

dermatitis in a mice model. Int Immunopharmacol. 45, 174-179.

(14) Cao Y., Chen J., Ren, G., Zhang Y., Tan, X., Yang, L. (2019) Punicalagin Prevents Inflammation in LPSInduced RAW264.7 Macrophages by Inhibiting FoxO3a/Autophagy Signaling Pathway. Nutrients. 11, 2794.

(15) Han B., Dai Y., Wu, H., Zhang Y., Wan, L., Zhao, J., Liu, Y., Xu, S., Zhou, L. (2019) Cimifugin Inhibits

Inflammatory Responses of RAW264.7 Cells Induced by Lipopolysaccharide. Med. Sci Monit. 25, 409-

417.

(16) Katsuragi, Y., Ichimura, Y., Komatsu, M. (2015) p62/SQSTM1 functions as a signaling hub and an

autophagy adaptor. FEBS J. 282, 4672-4678.

(17) Zhang, X., Jin, J.Y., Wu, J., Qin, X., Streilein, R., Hall, R. P., Zhang, J.W. (2015). RNA-Seq and ChIP-Seq

reveal SQSTM1/p62 as a key mediator of JunB suppression of NF-κB-dependent inflammation. J Invest

Dermatol. 135, 1016-1024.

(18) Lee, H.M., Shin, D.M., Yuk, J.M., Shi, G., Choi, D.K., Lee, S.H., Huang, S.M., Kim J.M., Kim C.D., Lee,

J.H., Jo, E.K. (2011). Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding

protein p62/SQSTM1. J Immunol. 186, 1248-1258.

(19) Mylka, V., Deckers, J., Ratman D., Cauwer, L.D., Thommis J., Rycke, R.D., Impens, F., Libert, C.,

Tavernier, J., Berghe, W.V., Gevaert, K., Bosscher K.D. (2018) The autophagy receptor SQSTM1/p62

mediates anti-inflammatory actions of the selective NR3C1/glucocorticoid receptor modulator compound A

(CpdA) in macrophages. Autophagy. 14, 2049-2064.

(20) Wu, R., Chen F, Wang, N., Tang, D., Kang, R. (2020) ACOD1 in immunometabolism and disease. Cell Mol

Immunol. 17, 822-833.

(21) Oishi, Y., Spann, N.J., Link, V.M., Muse, E.D., Strid, T., Edillor, C., Kolar, M.J., Matsuzaka, T., Hayakawa,

S., Tao, J., Kaikkonen, M.U., Carlin, A.F., Lam, M.T., Manabe, I., Shimano, H., Saghatelian, A., and Glass,

C.K. (2017) Cell Metab. 25, 412-427.

(22) Perrtti, M., D’Acquisto, F. (2009) Annexin A1 and glucocorticoids as effectors of the resolution of

inflammation. Nat Rev Immunol. 9, 62-70.

(23) Dallacasagrande, V., Hajjar, K.A. (2020) Annexin A2 in Inflammation and Host Defense. Cells. 9, 1499.

(24) Swanson, K.V., Deng, M., Ting, J.P.Y. (2019) The NLRP3 inflammasome: molecular activation and

regulation to therapeutics. Nat. Rev. Immunol. 19, 477-489.

(25) Zhong, Z., Umemura, A., Sanchez-Lopez, E., Liang, S., Shalapour, S., Wong, J., He, F., Boassa, D., Perkins,

G., Ali, S.R., McGeough, M.D., Ellisman, M.H., Seki, E., Gustafsson, A.B., Hoffman, H.M., Diaz-Meco,

M.T., Moscat, J., Karin, M. (2016) NF-κB Restricts Inflammasome Activation via Elimination of Damaged

Mitochondria. Cell 164, 896-910.

(26) Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathirana, S., Kundu, D.J., Inuganti, A.,

Griss, J., Mayer, G., Eisenacher, M., Pérez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yılmaz, S.,

Tiwary, S., Cox, J., Audain, E., Walzer, M., Jarnuczak, A.F., Ternent, T., Brazma, A., Vizcaíno, J.A. (2019)

The PRIDE database and related tools and resources in 2019: improving support for quantification data.

Nucleic Acids Res. 47, D442-D450.

17

18

Memoirs of The Faculty of B. O. S. T. of Kindai University No. 47 (2022)

英文抄録

Elucidation of the molecular mechanism of anti-inflammatory effect of mango leaf extract

by a SWATH acquisition method

Kento Yoshimoto1, Mone Kurokawa2, Hibiki Oomi2, Rika Kawahata2, Yuki Minamoto2, Kunihiro Kishida1,3,

Tetsuya Matsukawa1,4, Kouhei Nagai1, 2

It is often difficult to fully elucidate the molecular mechanism of functional foods, since foods generally contain

multiple functional substances, which may act on different targets. Therefore, there is a need to develop a method

that comprehensively captures the effects of food ingredients on cells. In this study, we first analyzed the details of

the anti-inflammatory effect of mango leaf ethanol extract (MLE) using macrophage-like Raw264.7 cells activated

with lipopolysaccharide (LPS). Secondary, we attempted to elucidate the molecular mechanism of the

anti-inflammatory effect of MLE by analyzing intracellular protein fluctuations by SWATH mass analysis. Addition

of MLE to Raw264.7 cells activated with 1.0 ng/mL LPS significantly reduced the concentrations of NO and IL-6 in

the culture supernatant at 0.56 μg/mL, and that of TNFα at 2.3 μg/mL. All of them decreased to below the detection

limit at 18 μg/mL of MLE. Similarly, the expression level of iNOS was significantly reduced at 2.5 μg/mL of MLE,

and that of TNFα, IL-6, and IL-1β was at 10 μg/mL. At 40 µg/mL of MLE, the expression level of all genes was

reduced to the level of LPS-untreated cells. When MLE was fractionated by normal phase chromatography, the NO

production inhibitory effect was not concentrated, and weak effects were detected on all fractions. This indicated that

multiple components in MLE may act on multiple receptors to exert a strong anti-inflammatory effect. When the

quantitative data obtained by SWATH-MS was analyzed by PC-DA, it was clearly distinguished into three groups,

untreated cells (LPS -), those treated with 10 ng/mL LPS (LPS+), and those treated with LPS and 10 µg/mL MLE

(MLE), indicating that the three groups possess distinctive proteome profiles. Among them, Annexin A1 and

Annexin A2, which have been reported to maintain cell homeostasis and contribute to the termination of

inflammation, were increased in the MLE group. Focusing on the factors related to the LPS-activated MAPK

signaling pathway, SQSTM1 involved in anti-inflammation increased, and p38MAPK and ERK1/2, which are the

central factors of the pathway, decreased. These factors were thought to be involved in the anti-inflammatory effect

of MLE.

Keywords: SWATH mass spectrometry, quantitative proteomics, anti-inflammatory effect, mango

Received 20 December 2021, Accepted 16 February 2022.

1. Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan

2. Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan

3. Department of Science and Technology on Food Safety, Faculty of Biology-Oriented Science and Technology, Kindai University,

Wakayama 649-6493, Japan

4. Department of Biotechnological Science, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493,

Japan

18

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る