リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Design and Development of Soft Fiber-Reinforced Polymer Composites with Extraordinarily High Crack Resistance」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Design and Development of Soft Fiber-Reinforced Polymer Composites with Extraordinarily High Crack Resistance

Cui, Wei 北海道大学

2020.09.25

概要

1.1. Overview
Engineering materials, for instance, metals, ceramics, are widely applied in industry owing to their desirable mechanical performance (high strength, stiffness, and good corrosion resistance, etc.).[1-3] However, they also show obvious shortcomings, such as heaviness, brittleness, and notch sensitivity. For decades, scientists and engineers have been attempting to overcome the limitations by developing novel structural materials that can offer prominent incorporations of stiffness, strength, toughness, and lightness at low cost. As science and technology advanced, synthetic compounds from multiple components, usually termed as composites, are invented and gradually replacing traditional industrial products due to the efficient combination of various mechanical properties that surpass those of their components by orders of magnitude.[4-6] One type of the most common composites at present, fiber-reinforced polymers (FRPs), are frequently used to substitute neat metals or ceramics in industry because of their improved comprehensive performance.[7, 8] These composites are generally composed of rigid elastic matrices (polymers, metals, ceramics, etc.) and rigid fibers, demonstrating high strength and stiffness.[9-11] Nevertheless, due to poor interfacial bonding and force transmission between matrix and fibers (Figure 1.1), the rigid/rigid combinations usually exhibit unsatisfactory fatigue crack resistance.[12-17] Namely, conventional fiber or fabric reinforced composites, with an isotropic high modulus (~several or tens of GPa), are intrinsically rigid materials with limited and resulting low toughness. More unfortunately, incorporating multiple and mutually exclusive properties into one system, as exemplified by high toughness, strength, and stiffness, results in materials that compromise one essential property at the expense of another.[18-20] Therefore, a pivotal challenge for current composite field is that how to improve material toughness without sacrificing strength, lightness, etc.

In fact, nature has managed to circumvent the dilemma and developed materials showing superior comprehensive mechanical performance (high fracture resistance, good load-bearing capacity and low density). The creations include, but not limited to, ligament and skin,[21, 22] bone and nacre.[23, 24] The strategy is to combine rigid, brittle components and soft, organic matrices into composite materials. Most of these natural materials have highly sophisticated structures with complex hierarchical designs existing over multiple length scales, which result in composite properties that far exceed what could be expected from a simple combination of the individual components (Figure 1.2). Extensive researches have been carried out in an endeavor to mimic the unique natural structure with synthetic approaches, aiming to obtain artificial composites exhibiting prominent mechanical performance which is comparable to natural materials. For example, a synthetic nacre was fabricated by predesigned matrix-directed mineralization, showing a specific toughness and strength close to natural nacre.[25] Another soft biomimetic composite was designed by incorporating stiff aramid nanofibers into poly (vinyl alcohol) system, whose mechanical properties matched or exceeded those of prototype tissues.[26] Recently, based on the delicate concept learning from nature, our group has developed a new class of tough soft composites from the soft/hard combination of polyampholyte (PA) hydrogel matrix and woven glass fiber fabric (GF).[27-29] The de-swelling tough PA gel, with multiple ionic bonds in the gel network,[30] demonstrates a self-adjustable adhesion to either positively or negatively charged surfaces.[31] Therefore, it is supposed to form good adhesion with negatively charged GF. As expected, the biomimetic composites, having a desirable interface between matrix and fiber, exhibit very high fracture toughness (~250 kJ m-2 ), strength (~65 N mm-1 ), and tensile modulus (~600 MPa), which are far superior to those of either the hydrogel or GF (Figure 1.3). As the composites contain water and are likely biocompatible, they exhibit some structural similarities with load-bearing natural tissues and hold great potential in biological applications. However, for this kind of hydrogel/fabric composites, a problem is that water evaporation during use occurs inevitably, which significantly influences their mechanical performance under industrial condition. Hence developing a universal composite system that is tough yet stable for industrial application awaits further exploration.

To overcome the dilemma for hydrogel/fabric composites, replacing water-contained matrices with more suitable ones is necessary. Similar to hydrogels, elastomers are also soft and energy dissipative, and they are usually tougher and water-free, enabling them to be applied in industry. Conventional elastomers, such as polydimethylsiloxane (PDMS), polyurethane (PU), are highly elastic and can hardly form good interfacial bonding with diverse surfaces. Composites from them usually show a limited mechanical performance. Lately, our group has successfully designed and developed a series of novel viscoelastic elastomers via a simple one-step radical polymerization of two kinds of acrylate monomers.[32] The resulting elastomers are not only soft and tough, but also adhesive to diverse surfaces (Figure 1.4), which allows the fabrication of composites with superior mechanical properties feasibly. 1.2. Outline of this thesis The aim of this study is to design extraordinarily crack-resistant, yet strong and lightweight fiber-reinforced polymers (FRPs), and generate a universal criterion by understanding the fracture mechanism. To address these issues, we mainly focus on the following three parts: 1) Selecting suitable matrices to construct crack-resistant FRPs; 2) Investigating the mechanical behaviors of resulting FRPs; 3) Understanding the fracture mechanism of tough FRPs by virtue of mechanics models.

In Chapter 2, a brief view on the concept of crack resistance is introduced. Meanwhile, common experimental methods to characterize the crack resistance of a material are explained. Based on the lessons learned from nature, basic strategy to enhance the crack resistance of materials is put forward. This chapter is helpful to initially understand why composite materials always show fantastic crack resistance.

In Chapter 3, the strategy to design an extraordinarily tough fiberreinforced polymers is introduced in detail. Viscoelastic matrices that are adhesive, soft, and tough are selected to combine with commercial fiber fabrics. The three key properties result in composites showing unique features that are totally different from traditional composites with thermosetting plastics as matrices. The good adhesion between fibers and matrix enables a strong interface, which ensures both components to fully dissipate stored energy; The softness of matrices gives extremely high fiber/matrix modulus ratio, leading to energy dissipation zones several orders of magnitude larger than common composites from rigid matrices; The tough matrices show strain energy density comparable to fibers, highly enhancing the energy dissipation density of composites in the dissipation zone. Therefore, we reasonably expect the composites are able to have a satisfying crack resistance.

In Chapter 4, the prepared fiber-reinforced polymer composites are tested to investigate their mechanical properties. The highly anisotropic composites demonstrate multiple fantastic properties such as high strength, high toughness, and low density, which can be rarely achieved by other material systems. The strong interface between matrix and fibers is the premise of high mechanical performance. Moreover, the soft composites can also be polymerized from thermal initiation besides photo initiation, extending the possible application in industry. The design strategy is also universal, strong and tough composites can be obtained by combining various fabrics and matrices that are adhesive, soft, and tough. High temperature influences the performance of soft composites. However, preparing composites from matrices with high glass transition temperature is a way to solve this problem.

In Chapter 5, the crack-resistant mechanism of soft composites is analyzed. Consistent with the tearing behaviors at different width, the composites show a size-dependent fracture energy. Two characteristic widths are defined to divide the fracture behaviors of soft composites. According to the characteristic widths, the fracture energy of the materials is determined by the matrix toughness, fiber geometry, and width, when the fracture behavior of composites is fiber pullout and matrix failure. When the fracture behavior of composites is mainly fiber fracture and matrix failure, then the fracture energy is decided by the force transfer length as well as the energy dissipation density, and the fracture energy become size-independent above this width, reflecting the intrinsic crack resistance of the composites. We show that force transfer length is related to the component modulus ratio while the energy dissipation density results from the volume weighed average work of extension of components. The results point out the way to fabricate tough composite materials. That is, maximizing force transfer length by increasing modulus ratio and enhancing energy dissipation density by using energy dissipative components. Based on this principle, we successfully fabricate composites that show fracture energy of as high as 2500 kJ m-2 , 100 times that of current toughest composites and are even tougher than metals. In Chapter 6, we apply the design strategy to hydrogel system, aiming to develop crack resistant composite hydrogels. Alginate hydrogels dried in confined condition are employed as the rigid skeleton. Polyacrylamide hydrogels are used as the soft matrix. The modulus ratio of rigid to soft can be as high as 105 , which is conducive for a large force transfer length. Meanwhile, the alginate skeleton has an energy dissipation density comparable to commercial fibers, which facilitates high energy dissipation density. The resulting composite hydrogels show improved tensile and tearing properties compared with components and are higher than current toughest hydrogels.

In Chapter 7, conclusions of the whole dissertation are summarized.

この論文で使われている画像

参考文献

1. F. Bouville, E. Maire, S. Meille, B. Van de Moortèle, A. J. Stevenson, S. Deville, Strong, toughand stiff bioinspired ceramics from brittle constituents. Nat. Mater. 13, (2014) 508.

2. B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, A fractureresistant high-entropy alloy for cryogenic applications. Science 345, (2014) 1153-1158.

3. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, C. C. Tasan, Metastable high-entropy dual-phase alloysovercome the strength–ductility trade-off. Nature 534, (2016) 227.

4. J. N. Coleman, U. Khan, W. J. Blau, Y. K. Gun’ko, Small but strong: a review of the mechanicalproperties of carbon nanotube–polymer composites. Carbon 44, (2006) 1624-1652.

5. J. Summerscales, N. Dissanayake, A. Virk, W. Hall, A review of bast fibres and their composites.Part 2–Composites. Compos. Part A-Appl. S. 41, (2010) 1336-1344.

6. D. Miracle, Metal matrix composites–from science to technological significance. Compos. Sci.Technol. 65, (2005) 2526-2540.

7. P. K. Mallick, Fiber-reinforced composites: materials, manufacturing, and design. CRC press,(2007).

8. H. Akil, M. Omar, A. Mazuki, S. Safiee, Z. M. Ishak, A. A. Bakar, Kenaf fiber reinforcedcomposites: A review. Mater. Design 32, (2011) 4107-4121.

9. W. Thomas, High Strength Glass Fibre-Resin Composites. Nature 242, (1973) 455-456.

10. J. McLoughlin, New high temperature carbon fibre composite. Nature 227, (1970) 701.

11. H. Ku, H. Wang, N. Pattarachaiyakoop, M. Trada, A review on the tensile properties of naturalfiber reinforced polymer composites. Compos. Part B-Eng. 42, (2011) 856-873.

12. D. C. Hofmann, J.-Y. Suh, A. Wiest, G. Duan, M.-L. Lind, M. D. Demetriou, W. L. Johnson,Designing metallic glass matrix composites with high toughness and tensile ductility. Nature451, (2008) 1085.

13. H. D. Wagner, A. Lustiger, Optimized toughness of short fiber-based composites: the effect offiber diameter. Compos. Sci. Technol. 69, (2009) 1323-1325.

14. T. Hsieh, A. Kinloch, K. Masania, J. S. Lee, A. Taylor, S. Sprenger, The toughness of epoxypolymers and fibre composites modified with rubber microparticles and silica nanoparticles. J.Mater. Sci. 45, (2010) 1193-1210.

15. S.-Y. Fu, X.-Q. Feng, B. Lauke, Y.-W. Mai, Effects of particle size, particle/matrix interfaceadhesion and particle loading on mechanical properties of particulate–polymer composites.Compos. Part B-Eng. 39, (2008) 933-961.

16. K. Kepple, G. Sanborn, P. Lacasse, K. Gruenberg, W. Ready, Improved fracture toughness ofcarbon fiber composite functionalized with multi walled carbon nanotubes. Carbon 46, (2008)2026-2033.

17. D. R. Bortz, E. G. Heras, I. Martin-Gullon, Impressive fatigue life and fracture toughnessimprovements in graphene oxide/epoxy composites. Macromolecules 45, (2011) 238-245.

18. S. Lv, D. M. Dudek, Y. Cao, M. Balamurali, J. Gosline, H. Li, Designed biomaterials to mimicthe mechanical properties of muscles. Nature 465, (2010) 69.

19. R. O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10, (2011) 817.

20. U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Bioinspired structural materials. Nat.Mater. 14, (2015) 23.131

21. K. Stok, A. Oloyede, Conceptual fracture parameters for articular cartilage. Clin. Biomech. 22,(2007) 725-735.

22. W. Yang, V. R. Sherman, B. Gludovatz, E. Schaible, P. Stewart, R. O. Ritchie, M. A. Meyers,On the tear resistance of skin. Nat. Commun. 6, (2015) 6649.

23. Y. A. Shin, S. Yin, X. Li, S. Lee, S. Moon, J. Jeong, M. Kwon, S. J. Yoo, Y.-M. Kim, T. Zhang,Nanotwin-governed toughening mechanism in hierarchically structured biological materials.Nat. Commun. 7, (2016) 10772.

24. F. Libonati, G. X. Gu, Z. Qin, L. Vergani, M. J. Buehler, Bone‐inspired materials by design:toughness amplification observed using 3D printing and testing. Adv. Eng. Mater. 18, (2016)1354-1363.

25. L.-B. Mao, H.-L. Gao, H.-B. Yao, L. Liu, H. Cölfen, G. Liu, S.-M. Chen, S.-K. Li, Y.-X. Yan,Y.-Y. Liu, Synthetic nacre by predesigned matrix-directed mineralization. Science 354, (2016)107-110.

26. L. Xu, X. Zhao, C. Xu, N. A. Kotov, Water‐rich biomimetic composites with abiotic self‐organizing nanofiber network. Adv. Mater. 30, (2018) 1703343.

27. D. R. King, T. L. Sun, Y. Huang, T. Kurokawa, T. Nonoyama, A. J. Crosby, J. P. Gong, Extremelytough composites from fabric reinforced polyampholyte hydrogels. Mater. Horiz. 2, (2015) 584-591.

28. Y. Huang, D. R. King, T. L. Sun, T. Nonoyama, T. Kurokawa, T. Nakajima, J. P. Gong, Energy‐dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv.Funct. Mater. 27, (2017) 1605350.

29. Y. Huang, D. R. King, W. Cui, T. L. Sun, H. Guo, T. Kurokawa, H. R. Brown, C.-Y. Hui, J. P.Gong, Superior fracture resistance of fiber reinforced polyampholyte hydrogels achieved byextraordinarily large energy-dissipative process zones. J. Mater. Chem. A 7, (2019) 13431-13440.

30. T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima,J. P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness andviscoelasticity. Nat. Mater. 12, (2013) 932.

31. C. K. Roy, H. L. Guo, T. L. Sun, A. B. Ihsan, T. Kurokawa, M. Takahata, T. Nonoyama, T.Nakajima, J. P. Gong, Self‐Adjustable Adhesion of Polyampholyte Hydrogels. Adv. Mater. 27,(2015) 7344-7348.

32. L. Chen, T. L. Sun, K. Cui, D. R. King, T. Kurokawa, Y. SARUWATARI, J. P. Gong, FacileSynthesis of Novel Elastomers with Tunable Dynamics for Toughness, Self-healing andAdhesion. J. Mater. Chem. A, (2019).

33. J. W. Hutchinson, Z. Suo, in Adv. Appl. Mech. (Elsevier, 1991), vol. 29, pp. 63-191.

34. R. Long, C.-Y. Hui, Fracture toughness of hydrogels: measurement and interpretation. SoftMatter 12, (2016) 8069-8086.

35. C. Creton, M. Ciccotti, Fracture and adhesion of soft materials: a review. Rep. Prog. Phys. 79,(2016) 046601.

36. M. Thouless, H. Cao, P. Mataga, Delamination from surface cracks in composite materials. J.Mater. Sci. 24, (1989) 1406-1412.

37. J. Holbery, D. Houston, Natural-fiber-reinforced polymer composites in automotiveapplications. JOM 58, (2006) 80-86.

38. R. Malkapuram, V. Kumar, Y. S. Negi, Recent development in natural fiber reinforced132polypropylene composites. J. Reinf. Plast. Compos. 28, (2009) 1169-1189.

39. H. Hargitai, I. Rácz, R. D. Anandjiwala, Development of hemp fiber reinforced polypropylenecomposites. J. Thermoplast. Compos. Mater. 21, (2008) 165-174.

40. M. Rühle, A. G. Evans, High toughness ceramics and ceramic composites. Prog. Mater Sci. 33,(1989) 85-167.

41. M. D. Thouiess, O. Sbaizero, L. S. Sigl, A. G. Evans, Effect of interface mechanical propertieson pullout in a SiC‐fiber‐reinforced lithium aluminum silicate glass‐ceramic. J. Am. Ceram. Soc.72, (1989) 525-532.

42. E. Bischoff, M. Rühle, O. Sbaizero, A. G. Evans, Microstructural studies of the interfacial zoneof a SiC‐fiber‐reinforced lithium aluminum silicate glass‐ceramic. J. Am. Ceram. Soc. 72, (1989)741-745.

43. P. Rao, T. L. Sun, L. Chen, R. Takahashi, G. Shinohara, H. Guo, D. R. King, T. Kurokawa, J. P.Gong, Tough hydrogels with fast, strong, and reversible underwater adhesion based on amultiscale design. Adv. Mater. 30, (2018) 1801884.

44. J.-Y. Sun, X. Zhao, W. R. Illeperuma, O. Chaudhuri, K. H. Oh, D. J. Mooney, J. J. Vlassak, Z.Suo, Highly stretchable and tough hydrogels. Nature 489, (2012) 133.

45. R. Rivlin, A. G. Thomas, Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci.10, (1953) 291-318.

46. T. Baumberger, C. Caroli, D. Martina, Solvent control of crack dynamics in a reversiblehydrogel. Nat. Mater. 5, (2006) 552.

47. T. Baumberger, C. Caroli, D. Martina, Fracture of a biopolymer gel as a viscoplasticdisentanglement process. Eur. Phys. J. E 21, (2006) 81-89.

48. M. E. Seitz, D. Martina, T. Baumberger, V. R. Krishnan, C.-Y. Hui, K. R. Shull, Fracture andlarge strain behavior of self-assembled triblock copolymer gels. Soft Matter 5, (2009) 447-456.

49. G. Miquelard-Garnier, D. Hourdet, C. Creton, Large strain behaviour of nanostructuredpolyelectrolyte hydrogels. Polymer 50, (2009) 481-490.

50. M. A. Haque, T. Kurokawa, G. Kamita, J. P. Gong, Lamellar bilayers as reversible sacrificialbonds to toughen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting.Macromolecules 44, (2011) 8916-8924.

51. Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J. P. Gong, Y. Osada, Determination of fractureenergy of high strength double network hydrogels. J. Phys. Chem. B 109, (2005) 11559-11562.

52. Q. M. Yu, Y. Tanaka, H. Furukawa, T. Kurokawa, J. P. Gong, Direct observation of damage zonearound crack tips in double-network gels. Macromolecules 42, (2009) 3852-3855.

53. M. A. Haque, T. Kurokawa, J. P. Gong, Super tough double network hydrogels and theirapplication as biomaterials. Polymer 53, (2012) 1805-1822.

54. H. Greensmith, Rupture of rubber. X. The change in stored energy on making a small cut in atest piece held in simple extension. J. Appl. Polym. Sci. 7, (1963) 993-1002.

55. W.-C. Lin, W. Fan, A. Marcellan, D. Hourdet, C. Creton, Large strain and fracture properties ofpoly (dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43, (2010) 2554-2563.

56. K. Mayumi, J. Guo, T. Narita, C. Y. Hui, C. Creton, Fracture of dual crosslink gels withpermanent and transient crosslinks. Extreme Mech. Lett. 6, (2016) 52-59.

57. H. Guo, N. Sanson, D. Hourdet, A. Marcellan, Thermoresponsive Toughening with CrackBifurcation in Phase‐Separated Hydrogels under Isochoric Conditions. Adv. Mater. 28, (2016)5857-5864.133

58. A. Gent, Adhesion and strength of viscoelastic solids. Is there a relationship between adhesionand bulk properties? Langmuir 12, (1996) 4492-4496.

59. M. W. Keller, S. R. White, N. R. Sottos, A self‐healing poly (dimethyl siloxane) elastomer. Adv.Funct. Mater. 17, (2007) 2399-2404.

60. K. J. Koester, J. Ager Iii, R. Ritchie, The true toughness of human cortical bone measured withrealistically short cracks. Nat. Mater. 7, (2008) 672.

61. R. O. Ritchie, Natural materials: armoured oyster shells. Nat. Mater. 13, (2014) 435.

62. G. E. Fantner, T. Hassenkam, J. H. Kindt, J. C. Weaver, H. Birkedal, L. Pechenik, J. A. Cutroni,G. A. Cidade, G. D. Stucky, D. E. Morse, Sacrificial bonds and hidden length dissipate energyas mineralized fibrils separate during bone fracture. Nat. Mater. 4, (2005) 612.

63. J. Behiri, W. Bonfield, Crack velocity dependence of longitudinal fracture in bone. J. Mater. Sci.15, (1980) 1841-1849.

64. H. Peterlik, P. Roschger, K. Klaushofer, P. Fratzl, From brittle to ductile fracture of bone. Nat.Mater. 5, (2006) 52.

65. K. Piekarski, Fracture of bone. J. Appl. Phys. 41, (1970) 215-223.

66. T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J. P. Gong, Mechanoresponsive selfgrowing hydrogels inspired by muscle training. Science 363, (2019) 504-508.

67. S. Lin, J. Liu, X. Liu, X. Zhao, Muscle-like fatigue-resistant hydrogels by mechanical training.Proc. Natl. Acad. Sci. USA 116, (2019) 10244-10249.

68. J. P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double‐network hydrogels with extremelyhigh mechanical strength. Adv. Mater. 15, (2003) 1155-1158.

69. J. P. Gong, Why are double network hydrogels so tough? Soft Matter 6, (2010) 2583-2590.

70. C.-Y. Hui, Z. Liu, S. L. Phoenix, Size effect on elastic stress concentrations in unidirectionalfiber reinforced soft composites. Extreme Mech. Lett., (2019) 100573.

71. Z. Wang, C. Xiang, X. Yao, P. Le Floch, J. Mendez, Z. Suo, Stretchable materials of hightoughness and low hysteresis. Proc. Natl. Acad. Sci. USA 116, (2019) 5967-5972.

72. A. Thomas, Rupture of rubber. II. The strain concentration at an incision. J. Polym. Sci. 18,(1955) 177-188.

73. K. Volokh, P. Trapper, Fracture toughness from the standpoint of softening hyperelasticity. J.Mech. Phys. Solids 56, (2008) 2459-2472.

74. J. M. Hedgepeth, Stress concentrations in filamentary structures. (1961).

75. H. Cox, The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3,(1952) 72.

76. R. Ritchie, Mechanisms of fatigue crack propagation in metals, ceramics and composites: roleof crack tip shielding. Materials Science and Engineering: A 103, (1988) 15-28.

77. U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, R. O. Ritchie, Bioinspired structural materials. Nat.Mater. 14, (2015) 23-36.

78. C. Ortiz, M. C. Boyce, Bioinspired structural materials. Science 319, (2008) 1053-1054.

79. L. S. Dimas, G. H. Bratzel, I. Eylon, M. J. Buehler, Tough composites inspired by mineralizednatural materials: computation, 3D printing, and testing. Adv. Funct. Mater. 23, (2013) 4629-4638.

80. K. E. Tanner, Small but extremely tough. Science 336, (2012) 1237-1238.

81. P. Song, Z. Xu, Y. Lu, Q. Guo, Bio-inspired hydrogen-bond cross-link strategy toward strongand tough polymeric materials. Macromolecules 48, (2015) 3957-3964.134

82. A. M. Hubbard, W. Cui, Y. Huang, R. Takahashi, M. D. Dickey, J. Genzer, D. R. King, J. P.Gong, Hydrogel/Elastomer Laminates Bonded via Fabric Interphases for Stimuli-ResponsiveActuators. Matter 1, (2019) 674-689.

83. E. Triki, P. Dolez, T. Vu-Khanh, Tear resistance of woven textiles–criterion and mechanisms.Compos. Part B-Eng. 42, (2011) 1851-1859.

84. E. Triki, T. Vu-Khanh, P. Nguyen-Tri, H. Boukehili, Mechanics and mechanisms of tearresistance of woven fabrics. Theor. Appl. Fract. Mec. 61, (2012) 33-39.

85. M. D. Demetriou, M. E. Launey, G. Garrett, J. P. Schramm, D. C. Hofmann, W. L. Johnson, R.O. Ritchie, A damage-tolerant glass. Nat. Mater. 10, (2011) 123.

86. B. L. Smith, T. E. Schäffer, M. Viani, J. B. Thompson, N. A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D. E. Morse, P. K. Hansma, Molecular mechanistic origin of the toughness of naturaladhesives, fibres and composites. Nature 399, (1999) 761.

87. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, R. O. Ritchie, Tough, bio-inspiredhybrid materials. Science 322, (2008) 1516-1520.

88. Á. Kmetty, T. Bárány, J. Karger-Kocsis, Self-reinforced polymeric materials: A review. Prog.Polym. Sci. 35, (2010) 1288-1310.

89. M. F. Ashby, Materials selection in mechanical design. MRS Bull. 30, (2005) 995.

90. J. Schroers, W. L. Johnson, Ductile bulk metallic glass. Phys. Rev. Lett. 93, (2004) 255506.

91. W. Clegg, K. Kendall, N. M. Alford, T. Button, J. Birchall, A simple way to make tough ceramics.Nature 347, (1990) 455.

92. X. Zhang, A. Vyatskikh, H. Gao, J. R. Greer, X. Li, Lightweight, flaw-tolerant, and ultrastrongnanoarchitected carbon. Proc. Natl. Acad. Sci. USA 116, (2019) 6665-6672.

93. X. Zhang, L. Zhong, A. Mateos, A. Kudo, A. Vyatskikh, H. Gao, J. R. Greer, X. Li, Theoreticalstrength and rubber-like behaviour in micro-sized pyrolytic carbon. Nat. Nanotechnol. 14, (2019)762-769.

94. C. Chen, Z. Wang, Z. Suo, Flaw sensitivity of highly stretchable materials. Extreme Mech. Lett.10, (2017) 50-57.

95. D. B. MARSHALL, M. V. SWAIN, Crack resistance curves in magnesia‐partially‐stabilizedzirconia. J. Am. Ceram. Soc. 71, (1988) 399-407.

96. Y. W. MAI, B. R. Lawn, Crack‐interface grain bridging as a fracture resistance mechanism inceramics: II, Theoretical fracture mechanics model. J. Am. Ceram. Soc. 70, (1987) 289-294.

97. D. C. Hofmann, J.-Y. Suh, A. Wiest, M.-L. Lind, M. D. Demetriou, W. L. Johnson, Developmentof tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility.Proc. Natl. Acad. Sci. USA 105, (2008) 20136-20140.

98. W. Curtin, The “tough” to brittle transition in brittle matrix composites. J. Mech. Phys. Solids41, (1993) 217-245.

99. S. Lin, C. Cao, Q. Wang, M. Gonzalez, J. E. Dolbow, X. Zhao, Design of stiff, tough and stretchyhydrogel composites via nanoscale hybrid crosslinking and macroscale fiber reinforcement. SoftMatter 10, (2014) 7519-7527.

100. C.-N. Wu, Q. Yang, M. Takeuchi, T. Saito, A. Isogai, Highly tough and transparent layeredcomposites of nanocellulose and synthetic silicate. Nanoscale 6, (2014) 392-399.

101. F. Gao, N. Zhang, X. Fang, M. Ma, Bioinspired design of strong, tough, and highly conductivepolyol-polypyrrole composites for flexible electronics. ACS Appl. Mater. Interfaces 9, (2017)5692-5698.135

102. S. Kawabata, M. Matsuda, K. Tei, H. Kawai, Experimental survey of the strain energy densityfunction of isoprene rubber vulcanizate. Macromolecules 14, (1981) 154-162.

103. D. Haines, W. Wilson, Strain-energy density function for rubberlike materials. J. Mech. Phys.Solids 27, (1979) 345-360.

104. T. Kawamura, K. Urayama, S. Kohjiya, Multiaxial deformations of end-linked poly(dimethylsiloxane) networks. 1. Phenomenological approach to strain energy density function.Macromolecules 34, (2001) 8252-8260.

105. S. Torquato, M. Rintoul, Effect of the interface on the properties of composite media. Phys. Rev.Lett. 75, (1995) 4067.

106. L. A. Estroff, A. D. Hamilton, At the interface of organic and inorganic chemistry: Bioinspiredsynthesis of composite materials. Chem. Mater. 13, (2001) 3227-3235.

107. F. Aymerich, F. Dore, P. Priolo, Prediction of impact-induced delamination in cross-plycomposite laminates using cohesive interface elements. Compos. Sci. Technol. 68, (2008) 2383-2390.

108. L. Greve, A. Pickett, Delamination testing and modelling for composite crash simulation.Compos. Sci. Technol. 66, (2006) 816-826.

109. V. Gupta, J. Yuan, D. Martinez, Calculation, measurement, and control of interface strength incomposites. J. Am. Ceram. Soc. 76, (1993) 305-315.

110. Z. Zou, S. Reid, S. Li, A continuum damage model for delaminations in laminated composites.J. Mech. Phys. Solids 51, (2003) 333-356.

111. C. Yang, T. Yin, Z. Suo, Polyacrylamide hydrogels. I. Network imperfection. J. Mech. Phys.Solids, (2019).

112. J. Liu, C. Yang, T. Yin, Z. Wang, S. Qu, Z. Suo, Polyacrylamide hydrogels. II. elastic dissipater.J. Mech. Phys. Solids 133, (2019) 103737.

113. M. Guo, L. M. Pitet, H. M. Wyss, M. Vos, P. Y. Dankers, E. Meijer, Tough stimuli-responsivesupramolecular hydrogels with hydrogen-bonding network junctions. J. Am. Chem. Soc. 136,(2014) 6969-6977.

114. T. Tanaka, E. Sato, Y. Hirokawa, S. Hirotsu, J. Peetermans, Critical kinetics of volume phasetransition of gels. Phys. Rev. Lett. 55, (1985) 2455.

115. J. P. Gong, N. Hirota, A. Kakugo, T. Narita, Y. Osada, Effect of aspect ratio on protein diffusionin hydrogels. J. Phys. Chem. B 104, (2000) 9904-9908.

116. T. R. Hoare, D. S. Kohane, Hydrogels in drug delivery: Progress and challenges. Polymer 49,(2008) 1993-2007.

117. K. R. Kamath, K. Park, Biodegradable hydrogels in drug delivery. Adv. Drug Delivery Rev. 11,(1993) 59-84.

118. K. Y. Lee, D. J. Mooney, Hydrogels for tissue engineering. Chem. Rev. 101, (2001) 1869-1880.

119. M. Shibayama, Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol.Chem. Phys. 199, (1998) 1-30.

120. J. Zarzycki, Critical stress intensity factors of wet gels. J. Non-Cryst. Solids 100, (1988) 359-363.

121. Y. Tanaka, K. Fukao, Y. Miyamoto, Fracture energy of gels. Eur. Phys. J. E 3, (2000) 395-401.

122. D. Bonn, H. Kellay, M. Prochnow, K. Ben-Djemiaa, J. Meunier, Delayed fracture of aninhomogeneous soft solid. Science 280, (1998) 265-267.

123. C.-C. Lin, A. T. Metters, Hydrogels in controlled release formulations: network design and136mathematical modeling. Adv. Drug Delivery Rev. 58, (2006) 1379-1408.

124. M. J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent polymer materials: a review. Iran. Polym. J.17, (2008) 451.

125. G. Lake, A. Thomas, The strength of highly elastic materials. Proc. R. Soc. London A 300, (1967)108-119.

126. P. J. Flory, Principles of polymer chemistry. (Cornell University Press, 1953).

127. A. Ghatak, K. Vorvolakos, H. She, D. L. Malotky, M. K. Chaudhury. (ACS Publications, 2000).

128. A. M. Saitta, M. L. Klein, Polyethylene under tensil load: Strain energy storage and breaking oflinear and knotted alkanes probed by first-principles molecular dynamics calculations. J. Chem.Phys. 111, (1999) 9434-9440.

129. H. R. Brown, A model of the fracture of double network gels. Macromolecules 40, (2007) 3815-3818.

130. M. T. I. Mredha, Y. Z. Guo, T. Nonoyama, T. Nakajima, T. Kurokawa, J. P. Gong, A facilemethod to fabricate anisotropic hydrogels with perfectly aligned hierarchical fibrous structures.Adv. Mater. 30, (2018) 1704937

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る