リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Pathophysiological Significance of Stiml Mutation 1n Sympathetic Response to Stress and Cardiovascular Phenotypes in SHRSP/Izm: In vivo Evaluation by Creation of a Novel Gene Knock-in Rat Using CRISPR/Cas9」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Pathophysiological Significance of Stiml Mutation 1n Sympathetic Response to Stress and Cardiovascular Phenotypes in SHRSP/Izm: In vivo Evaluation by Creation of a Novel Gene Knock-in Rat Using CRISPR/Cas9

Batbavar, Odongoo 島根大学

2021.01.13

概要

Genetic approach using rat congenic lines between SHRSP/Izm and WKY/Izm identified stromal interaction molecule 1 (Stim1), an essential component of store-operated Ca2+ entry (SOCE), as a promising candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP. Since SHRSP has a nonsense mutation in Stim1 resulting in the expression of a truncated form of STIM1 that caused reduction of SOCE activity in primary cultured cerebral astrocytes, we created SHRSP/Izm knocked-in with the wild-type Stim1 (KI SHRSP) by the CRISPR/Cas9 method to investigate whether the functional recovery of STIM1 would mitigate sympathoexcitation to stress in vivo in SHRSP. No potential off-target nucleotide substitutions/deletions/insertions were found in KI SHRSP. Western blotting and fluorescent Ca2+ imaging of astrocytes confirmed wild-type STIM1 expression and restored SOCE activity in astrocytes from KI SHRSP, respectively. Blood pressure (BP) measured by the tail cuff method at 12, 16, and 20 weeks of age did not significantly differ between SHRSP and KI SHRSP, while the heart rate of KI SHRSP at 16 and 20 weeks of age was significantly lower than that of agematched SHRSP. Unexpectedly, the sympathetic response to stress (evaluated with urinary excretion of norepinephrine under cold stress and BP elevation under cold/restraint stress) did not significantly differ between SHRSP and KI SHRSP. The present results indicated that the functional deficit of STIM1 was not a genetic determinant of the exaggerated sympathetic response to stress in SHRSP and that it would be necessary to explore other candidates within the congenic fragment on chromosome 1.

参考文献

1. Fagard RH, Cornelissen VA. Incidence of cardiovascular events in white-coat, masked and sustained hypertension versus true normotension: a meta-analysis. J. Hypertens. 2007;25:2193-2198.

2. Booth JN 3rd, Diaz KM, Seals SR, Sims M, Ravenell J, Muntner P, Shimbo D. Masked hypertension and cardiovascular disease events in a prospective cohort of blacks: The Jackson Heart Study. Hypertension 2016;68:501-510.

3. Cohen JB, Lotito MJ, Trivedi UK, Denker MG, Cohen DL, Townsend RR. Cardiovascular Events and Mortality in White Coat Hypertension: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2019;170:853-862.

4. Yamori Y, Horie R, Handa H, Sato M, Fukase M. Pathogenetic similarity of strokes in strokeprone spontaneously hypertensive rat and humans. Stroke 1976;7:46-53.

5. Nabika T, Cui Z, Masuda J. The stroke-prone spontaneously hypertensive rat: how good is it as a model for cerebrovascular diseases? Cell. Mol. Neurobiol. 2004;24:639-646.

6. Yamori Y, Ikeda K, Kulakowski EC, McCarty R, Lovenberg W. Enhanced sympatheticadrenal medullary response to cold exposure in spontaneously hypertensive rats. J. Hypertens. 1985;3:63-66.

7. Yamamoto J, Nakai M, Natsume T. Cardiovascular responses to acute stress in young-to-old spontaneously hypertensive rats. Hypertension 1987;9:362–370.

8. Li S-G. Lawler JE, Randall DC, Brown DR. Sympathetic nervous activity and arterial pressure responses during rest and acute behavioral stress in SHR and WKY rats. J. Auton. Nerv. Syst. 1997;62:147–154.

9. Zhang W, Thoren P. Hyper-responsiveness of adrenal sympathetic nerve activity in spontaneously hypertensive rats to ganglionic blockade, mental stress and neuronglucopenia. Pflugers Arch-Eur. J. Physiol. 1998;437:56–60.

10. McDougall SJ, Paull JRA, Widdop RE, Lawrence AJ. Restraint stress: differential cardiovascular responses in Wistar–Kyoto and spontaneously hypertensive rats. Hypertension 2000;35:126–129.

11. Kishi T, Hirooka Y, Kimura Y, Sakai K, Ito K, Shimokawa H, Takeshita A. Overexpression of eNOS in RVLM improves impaired baroreflex control of heart rate in SHRSP. Rostral ventrolateral medulla. Stroke-prone spontaneously hypertensive rats. Hypertension 2003 41:255-260.

12. Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation 2004;109:2357-2362.

13. Kishi T, Hirooka Y, Konno S, Ogawa K, Sunagawa K. Angiotensin II type 1 receptoractivated caspase-3 through ras/mitogen-activated protein kinase/extracellular signalregulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension 2010;55:291-297.

14. Nishihara M, Hirooka Y, Matsukawa R, Kishi T, Sunagawa K. Oxidative stress in the rostral ventrolateral medulla modulates excitatory and inhibitory inputs in spontaneously hypertensive rats. J. Hypertens. 2012;30:97-106.

15. Lee WK, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental models to clinical applications. J. Hum. Hypertens. 2000;14:631-647.

16. Mashimo T, Nabika T, Matsumoto C, Tamada T, Ueno K, Sawamura M, Ikeda K, Kato N, Nara Y, Yamori Y. Aging and salt-loading modulate blood pressure QTLs in rats. Am. J. Hypertens. 1999;12:1098-1104.

17. Cui ZH, Ikeda K, Kawakami K, Gonda T, Nabika T, Masuda J. Exaggerated response to restraint stress in rats congenic for the chromosome 1 blood pressure quantitative trait locus. Clin. Exp. Pharmacol. Physiol. 2003;30:464–469.

18. Cui ZH, Ikeda K, Kawakami K, Gonda T, Masuda J, Nabika T. Exaggerated response to cold stress in a congenic strain for the quantitative trait locus for blood pressure. J. Hypertens. 2004;22:2103–2109.

19. Xiao B, Harada Y, Kawakami K, Nabika T. A 1.8-Mbp fragment on chromosome 1 affects sympathetic response to stress: evaluation in reciprocal congenic strains between strokeprone spontaneously hypertensive rat and Wistar-Kyoto rat. J. Hypertens. 2011;29:257–265. 20.

20. Iigaya K, Kumagai H, Nabika T, Harada Y, Onimaru H, Oshima N, Takimoto C, Kamayachi T, Saruta T, Ito H. Relation of blood pressure quantitative trait locus on rat chromosome 1 to hyperactivity of rostralventrolateral medulla. Hypertension 2009;53:42-48.

21. Ferdaus MZ, Xiao B, Ohara H, Nemoto K, Harada Y, Saar K, Hübner N, Isomura M, Nabika T. Identification of Stim1 as a candidate gene for exaggerated sympathetic response to stress in the stroke-prone spontaneously hypertensive rat. PLoS One 2014;9:e95091.

22. Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA, Cahalan MD. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 2005;437:902-905.

23. Huang GN, Zeng W, Kim JY, Yuan JP, Han L, Muallem S, Worley PF. STIM1 carboxylterminus activates native SOC, I(crac) and TRPC1 channels. Nat. Cell Biol. 2006;8:1003- 1010.

24. Berna-Erro A, Woodard GE, Rosado JA. Orais and STIMs: physiological mechanisms and disease. J. Cell. Mol. Med. 2012;16:407-424.

25. Hulot JS, Fauconnier J, Ramanujam D, Chaanine A, Aubart F, Sassi Y, Merkle S, Cazorla O, Ouillé A, Dupuis M, Hadri L, Jeong D, Mühlstedt S, Schmitt J, Braun A, Bénard L, Saliba Y, Laggerbauer B, Nieswandt B, Lacampagne A, Hajjar RJ, Lompré AM, Engelhardt S. Critical role for stromal interaction molecule 1 in cardiac hypertrophy. Circulation 2011;124:796-805.

26. Kassan M, Ait-Aissa K, Radwan E, Mali V, Haddox S, Gabani M, Zhang W, Belmadani S, Irani K, Trebak M, Matrougui K. Essential Role of Smooth Muscle STIM1 in Hypertension and Cardiovascular Dysfunction. Arterioscler. Thromb. Vasc. Biol. 2016;36:1900-1909.

27. Ohba T, Watanabe H, Murakami M, Iino K, Adachi T, Baba Y, Kurosaki T, Ono K, Ito H. Stromal interaction molecule 1 haploinsufficiency causes maladaptive response to pressure overload. PLoS One 2017;12:e0187950.

28. Kono T, Tong X, Taleb S, Bone RN, Iida H, Lee CC, Sohn P, Gilon P, Roe MW, EvansMolina C. Impaired Store-Operated Calcium Entry and STIM1 Loss Lead to Reduced Insulin Secretion and Increased Endoplasmic Reticulum Stress in the Diabetic β-Cell. Diabetes 2018;67:2293-2304.

29. Picard C, McCarl CA, Papolos A, Khalil S, Lüthy K, Hivroz C, LeDeist F, Rieux-Laucat F, Rechavi G, Rao A, Fischer A, Feske S. STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N. Engl. J. Med. 2009;360:1971-1980.

30. Ohara H, Nabika T. A nonsense mutation of Stim1 identified in stroke-prone spontaneously hypertensive rats decreased the store-operated calcium entry in astrocytes. Biochem. Biophys. Res. Commun. 2016;476:406-411.

31. Schousboe A, Bak LK, Waagepetersen HS. Astrocytic Control of Biosynthesis and Turnover of the Neurotransmitters Glutamate and GABA. Front. Endocrinol. 2013;4:102.

32. Allen AM, Dosanjh JK, Erac M, Dassanayake S, Hannan RD, Thomas WG. Expression of constitutively active angiotensin receptors in the rostral ventrolateral medulla increases blood pressure. Hypertension 2006;47:1054-1061.

33. Isegawa K, Hirooka Y, Katsuki M, Kishi T, Sunagawa K. Angiotensin II type 1 receptor expression in astrocytes is upregulated leading to increased mortality in mice with myocardial infarction-induced heart failure. Am. J. Physiol. Heart. Circ. Physiol. 2014;307:H1448-1455

34. Mahal Z, Fujikawa K, Matsuo H, Zahid HM, Koike M, Misumi M, Kaneko T, Mashimo T, Ohara H, Nabika T. Effects of the Prdx2 depletion on blood pressure and life span in spontaneously hypertensive rats. Hypertens. Res. 2019;42:610-617.

35. Yoshimi K, Kaneko T, Voigt B, Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat. Commun. 2014;5:4240.

36. Serwach K, Gruszczynska-Biegala J. STIM Proteins and Glutamate Receptors in Neurons: Role in Neuronal Physiology and Neurodegenerative Diseases. Int. J. Mol. Sci. 2019;20:2289.

37. Zhang H, Sun AY, Kim JJ, Graham V, Finch EA, Nepliouev I, Zhao G, Li T, Lederer WJ, Stiber JA, Pitt GS, Bursac N, Rosenberg PB. STIM1-Ca2+ signaling modulates automaticity of the mouse sinoatrial node. Proc. Natl. Acad. Sci. USA. 2015;112:E5618-27.

38. Böhm M, Swedberg K, Komajda M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, on behalf of the SHIFT Investigators. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebocontrolled trial. Lancet. 2010;376:886-94.

39. Epstein HT. The effect of litter size on weight gain in mice. J. Nutr. 1978;108:120-3.

40. Kahan E and Rosen M. The influence of litter size and favourable conditions on mortality and weaning weights in rats. Lab. Anim. 1984;18:247-51.

41. Berton O, Aguerre S, Sarrieau A, Mormede P, Chaouloff F. Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience. 1998;82:147-59.

42. Meerlo P, Overkamp GJ, Daan S, Van Den Hoofdakker RH, Koolhaas JM. Changes in Behaviour and Body Weight Following a Single or Double Social Defeat in Rats. Stress. 1996;1:21-32.

43. Kassan M, Zhang W, Aissa KA, Stolwijk J, Trebak M, Matrougui K. Differential role for stromal interacting molecule 1 in the regulation of vascular function. Pflugers Arch.-Eur. J. Physiol. 2015;467:1195-202.

44. Nishimoto M, Mizuno R, Fujita T, Isshiki M. Stromal interaction molecule 1 modulates blood pressure via NO production in vascular endothelial cells. Hypertens. Res. 2018;41:506 – 514.

参考文献をもっと見る