リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「W18O49 - 系材料の高温熱電特性」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

W18O49 - 系材料の高温熱電特性

トラン, グアン, ミン, ニャット QUANG MINH NHAT TRAN 九州大学

2022.03.23

概要

This thesis is devoted to the investigations for high-temperature thermoelectric properties of W18O49-based materials. The study began with the synthesis strategies for acquiring monophasic ceramic W18O49, following by attempts on improving thermoelectric properties via oxygen vacancies manipulating. Next, the anisotropic nature of the structures and microstructure morphologies were investigated for the effects on thermoelectric performance. Finally, attempts on carrier concentration control by substitution W6+ with lower valance cations were reported with significant improvement in thermoelectric efficiencies.

 This thesis consists of six chapters. Summaries of each chapter are presented in the following:

 Chapter 1 presents the introduction, the background and motivation for this work. The current status of high temperature thermoelectric materials was briefly reviewed with the emphasis of the newly focused Tungsten suboxides materials.

 The chapter 2 explains the main experimental processes involved in this study and all the corresponding apparatus were employed. Furthermore, the theories behind the characterization methodologies of the thermoelectric properties were discussed.

 The chapter 3 elaborates the work in direct synthesis of W18O49. By reactive SPS, anisotropic thermoelectric properties of W18O49 could be partially influenced by the increment of applied pressure. The ordered orientation of crystallite under high pressure offers an intrinsically low thermal conductivity materials, despite its metallic nature, via more efficient intrinsic phonon scattering from the alignment of the tunnel structures. Theoretically, anisotropy could even be significantly strengthened by applying higher uniaxial pressure, thus, ZT was enhanced by employing this technique to 0.08 at 1073 K under sintered pressure of 50 MPa in comparison with the ZT of 0.06 of the less oriented samples.

 The chapter 4 elucidates the processes in enhancing the thermoelectric performance of the W18O49-based materials by carrier tunning. Since the Tungsten oxides WOx (2 ≤ x ≤ 3) are a series of homologous structures, isolating monophasic polycrystalline ceramic materials was difficult. Many attempts were made from solid-state reaction in vacuum, to hot-pressing sintering and reactive spark plasma sintering. The W18O49 ceramic could be directly synthesize as a single phase through reactive spark plasma sintering, or pre-reacted in vacuum following by densification via SPS. The former method leaves the sample with anisotropic structures and thermoelectric properties, while the later is suitable for doping strategy through thermal diffusion mechanism.

 Chapter 5 presents the work on the doping of Ti in W18O49-based materials for improving its thermoelectric performance. The (W1-xTix)18O49 samples (0 ≤ x ≤ 0.25) were prepared by solid state reaction in vacuum followed by densification via spark plasma sintering method. The Ti substitution increased the Seebeck coefficient, the power factor, and decreased both the electronic and lattice thermal conductivity. The synergistic substitution effect on the electrical and thermal properties and inherently low lattice thermal conductivity of < 1 W K1 m1 originating from the tunnel structure led to the ZT of 0.2 at 1073 K (x = 0.1). The Jonker-type approximation between the Seebeck coefficient and electrical conductivity indicated that the power factor (and the ZT) of W18O49 can be further enhanced by decreasing the electron carrier concentration. For sample x ≥ 0.1, secondary unknown phase was observed, indicating the solubility limit of Ti as a dopant. However, the thermoelectric performance of the material was continuously enhanced up to x = 0.2 reaching highest ZT value of 0.5 at 1073K, then decreasing drastically due to the domination of secondary phases.

 Chapter 6 summarizes the findings and conclusions from the preceding chapters, with the discussion about the outlook for future developments of W18O49-based materials for thermoelectric applications.

この論文で使われている画像

参考文献

[1] H.J. Goldsmid, Introduction to Thermoelectricity, Springer Berlin Heidelberg, New York, 2016.

[2] Y.X. Gan, Nanomaterials for Thermoelectric Devices, Jenny Stanford Publishing, Singapore, 2018.

[3] C. Goupil, W. Seifert, K. Zabrocki, E. Müller, G.J. Snyder, Entropy 13 (2011) 1481– 1517.

[4] L. Han, N. Pryds, N. Van Nong, High Temperature Thermoelectric Properties of ZnO Based Materials, Department of Energy Conversion and Storage, Technical University of Denmark, 2014.

[5] C. Kittel, Introduction to Solid State Physics, Eight Edition, John Wiley & Sons, United States, 2005.

[6] T.M. Tritt, Annu. Rev. Mater. Res. 41 (2011) 433–448.

[7] G.J. Snyder, E.S. Toberer, Nat. Mater. 7 (2008) 105–114.

[8] D.M. Rowe, Handbook of Thermoelectric, CRC Press, New York, 1995.

[9] H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3 (2015) 041506.

[10] M. Ohtaki, K. Araki, J. Ceram. Soc. Jpn. 119 (2011) 813–816.

[11] K. Suekuni, C.H. Lee, H.I. Tanaka, E. Nishibori, A. Nakamura, H. Kasai, H. Mori, H. Usui, M. Ochi, T. Hasegawa, M. Nakamura, S. Ohira‐Kawamura, T. Kikuchi, K. Kaneko, H. Nishiate, K. Hashikuni, Y. Kosaka, K. Kuroki, T. Takabatake, Adv. Mater. 30 (2018) 1706230.

[12] K. Suekuni, Y. Shimizu, E. Nishibori, H. Kasai, H. Saito, D. Yoshimoto, K. Hashikuni, Y. Bouyrie, R. Chetty, M. Ohta, E. Guilmeau, T. Takabatake, K. Watanabe, M. Ohtaki, J. Mater. Chem. A 7 (2019) 228–235.

[13] S. Hirata, M. Ohtaki, K. Watanabe, Ceram. Int. 46 (2020) 25964–25969.

[14] M. Ohtaki, J. Ceram. Soc. Jpn. 119 (2011) 770–775.

[15] H. Mamur, M.R.A. Bhuiyan, F. Korkmaz, M. Nil, Renew. Sustain. Energy Rev. 82 (2018) 4159–4169.

[16] G. Tan, L.-D. Zhao, M.G. Kanatzidis, Chem. Rev. 116 (2016) 12123–12149.

[17] A. Kazuto, Lead Telluride. In: Electronic States of Narrow-Gap Semiconductors Under Multi-Extreme Conditions, Springer Theses (Recognizing Outstanding Ph.D. Research), Springer, Singapore, 2019.

[18] J.A. Perez-Taborda, M. Muñoz Rojo, J. Maiz, N. Neophytou, M. Martin-Gonzalez, Sci. Rep. 6 (2016) 32778.

[19] J.A.P. Taborda, Silicon‐Germanium (SiGe) Nanostructures for Thermoelectric Devices: Recent Advances and New Approaches to High Thermoelectric Efficiency, IntechOpen, 2017.

[20] X. Zhang, L.-D. Zhao, J. Materiomics 1 (2015) 92–105.

[21] T.-R. Wei, Y. Qin, T. Deng, Q. Song, B. Jiang, R. Liu, P. Qiu, X. Shi, L. Chen, Sci. China Mater. 62 (2019) 8–24.

[22] M. Ohtaki, K. Araki, K. Yamamoto, J. Electron. Mater. 38 (2009) 1234–1238.

[23] G. Kieslich, G. Cerretti, I. Veremchuk, R.P. Hermann, M. Panthöfer, J. Grin, W. Tremel, Phys. Status Solidi A 213 (2016) 808–823.

[24] Y. Lin, J. Lan, C. Nan, Oxide Thermoelectric Materials: From Basic Principles to Applications, 1st ed., Wiley, 2019.

[25] G. Ren, J. Lan, C. Zeng, Y. Liu, B. Zhan, S. Butt, Y.-H. Lin, C.-W. Nan, JOM 67 (2015) 211–221.

[26] S. Chen, Z. Ren, Mater. Today 16 (2013) 387–395.

[27] W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser, G.J. Snyder, Nat. Rev. Mater. 1 (2016) 16032.

[28] J. Zhou, H. Zhu, T.-H. Liu, Q. Song, R. He, J. Mao, Z. Liu, W. Ren, B. Liao, D.J. Singh, Z. Ren, G. Chen, Nat. Commun. 9 (2018).

[29] H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D.J. Singh, G. Chen, K. Nielsch, Z. Ren, Nat. Commun. 9 (2018).

[30] T. Tanimoto, K. Suekuni, T. Tanishita, H. Usui, T. Tadano, T. Kamei, H. Saito, H. Nishiate, C.H. Lee, K. Kuroki, M. Ohtaki, Adv. Funct. Mater. 30 (2020) 2000973.

[31] K. Suekuni, H. Usui, S. Qiao, K. Hashikuni, T. Hirano, H. Nishiate, C.-H. Lee, K. Kuroki, K. Watanabe, M. Ohtaki, J. Appl. Phys. 125 (2019) 175111.

[32] T. Tanishita, K. Suekuni, H. Nishiate, C.-H. Lee, M. Ohtaki, Phys. Chem. Chem. Phys. 22 (2020) 2081–2086.

[33] Md.N. Hasan, H. Wahid, N. Nayan, M.S. Mohamed Ali, Int. J. Energy Res. 44 (2020) 6170–6222.

[34] G. Chen, W. Xu, D. Zhu, J. Mater. Chem. C 5 (2017) 4350–4360.

[35] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Chem. Mater. 25 (2013) 2911–2920.

[36] P.A. Cox, Electronic Structure of Solids, Oxford University Press, New York, 1987.

[37] A. Shakouri, Annu. Rev. Mater. Res. 41 (2011) 399–431.

[38] Y. Tokura, Science 288 (2000) 462–468.

[39] N. Tsuda, K. Nasu, A. Fujimori, K. Siratori, Electronic Conduction in Oxides, Springer, Berlin, 2000.

[40] M.L. Foo, Y. Wang, S. Watauchi, H.W. Zandbergen, T. He, R.J. Cava, N.P. Ong, Phys. Rev. Lett. 92 (2004) 247001.

[41] Q. Huang, M.L. Foo, R.A. Pascal, J.W. Lynn, B.H. Toby, T. He, H.W. Zandbergen, R.J. Cava, Phys. Rev. B 70 (2004) 184110.

[42] J. Sugiyama, H. Nozaki, J.H. Brewer, E.J. Ansaldo, G.D. Morris, C. Delmas, Phys. Rev. B 72 (2005) 144424.

[43] G. Lang, J. Bobroff, H. Alloul, P. Mendels, N. Blanchard, G. Collin, Phys. Rev. B 72 (2005) 094404.

[44] S. Hirata, M. Ohtaki, Evergreen 7 (2020) 1–6.

[45] T. Tsubota, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Chem. 7 (1997) 85–90.

[46] M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79 (1996) 1816–1818.

[47] L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47 (1993) 16631–16634.

[48] M. S. Dresselhaus, G. Dresselhaus, Microscale Thermophys. Eng. 3 (1999) 89–100.

[49] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.- P. Fleurial, P. Gogna, Adv. Mater. 19 (2007) 1043–1053.

[50] A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Environ. Sci. 2 (2009) 466.

[51] M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Energy Env. Sci 5 (2012) 5147–5162.

[52] J.P. Heremans, M.S. Dresselhaus, L.E. Bell, D.T. Morelli, Nat. Nanotechnol. 8 (2013) 471–473.

[53] M.-S. Jeng, R. Yang, D. Song, G. Chen, J. Heat Transf. 130 (2008) 042410.

[54] K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489 (2012) 414–418.

[55] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508 (2014) 373–377.

[56] N.S. Krasutskaya, A.I. Klyndyuk, L.E. Evseeva, S.A. Tanaeva, Inorg. Mater. 52 (2016) 393–399.

[57] P. Liu, G. Chen, Y. Cui, H. Zhang, F. Xiao, L. Wang, H. Nakano, Solid State Ion. 179 (2008) 2308–2312.

[58] A.I. Klyndyuk, N.S. Krasutskaya, E.A. Chizhova, Glass Phys. Chem. 44 (2018) 100–107.

[59] N. Sun, S.T. Dong, B.B. Zhang, Y.B. Chen, J. Zhou, S.T. Zhang, Z.B. Gu, S.H. Yao, Y.F. Chen, J. Appl. Phys. 114 (2013) 043705.

[60] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata, I. Terasaki, Phys. Rev. B 60 (1999) 10580–10583.

[61] R.R. Heikes, Thermoelectricity: Science and Engineering, Interscience Publishers, New York, 1961.

[62] W. Koshibae, K. Tsutsui, S. Maekawa, Phys. Rev. B 62 (2000) 6869–6872.

[63] R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani, S. Sodeoka, Jpn. J. Appl. Phys. 39 (2000) L1127–L1129.

[64] R. Funahashi, M. Shikano, Appl. Phys. Lett. 81 (2002) 1459–1461.

[65] M. Wolf, R. Hinterding, A. Feldhoff, Entropy 21 (2019) 1058.

[66] N. Prasoetsopha, S. Pinitsoontorn, T. Kamwanna, V. Amornkitbamrung, K. Kurosaki, Y. Ohishi, H. Muta, S. Yamanaka, J. Alloys Compd. 588 (2014) 199–205.

[67] J.S. Cha, S.-M. Choi, G.H. Kim, S.-J. Kim, K. Park, Ceram. Int. 44 (2018) 6376– 6383.

[68] S. Saini, H.S. Yaddanapudi, K. Tian, Y. Yin, D. Magginetti, A. Tiwari, Sci. Rep. 7 (2017).

[69] Y.-N. Li, P. Wu, S.-P. Zhang, S. Chen, D. Yan, J.-G. Yang, L. Wang, X.-L. Huai, Chin. Phys. B 27 (2018) 057201.

[70] S. Butt, W. Xu, W.Q. He, Q. Tan, G.K. Ren, Y. Lin, C.-W. Nan, J Mater Chem A 2 (2014) 19479–19487.

[71] F. Delorme, C.F. Martin, P. Marudhachalam, D. Ovono Ovono, G. Guzman, J. Alloys Compd. 509 (2011) 2311–2315.

[72] U. Hira, L. Han, K. Norrman, D.V. Christensen, N. Pryds, F. Sher, RSC Adv. 8 (2018) 12211–12221.

[73] S. Butt, Y.-C. Liu, J.-L. Lan, K. Shehzad, B. Zhan, Y. Lin, C.-W. Nan, J. Alloys Compd. 588 (2014) 277–283.

[74] M. Bittner, N. Kanas, R. Hinterding, F. Steinbach, D. Groeneveld, P. Wemhoff, K. Wiik, M.-A. Einarsrud, A. Feldhoff, J. Eur. Ceram. Soc. 39 (2019) 1237–1244.

[75] M. Ito, D. Furumoto, J. Alloys Compd. 450 (2008) 517–520.

[76] K. Park, J.W. Choi, J. Nanosci. Nanotechnol. 12 (2012) 3624–3628.

[77] K. Park, K.U. Jang, H.-C. Kwon, J.-G. Kim, W.-S. Cho, J. Alloys Compd. 419 (2006) 213–219.

[78] T. Nagira, M. Ito, S. Katsuyama, K. Majima, H. Nagai, J. Alloys Compd. 348 (2003) 263–269.

[79] G. Çetin Karakaya, B. Özçelik, O. Nane, A. Sotelo, Sh. Rasekh, M.A. Torres, M.A. Madre, J. Electroceramics 40 (2018) 11–15.

[80] F. Gao, Q. He, R. Cao, F. Wu, X. Hu, H. Song, Int. J. Mod. Phys. B 29 (2015) 1550192.

[81] H.S. Hao, J.Q. Ye, Y.T. Liu, X. Hu, Adv. Mater. Res. 105–106 (2010) 336–338.

[82] A.F. Wells, Structural Inorganic Chemistry, Oxford: Clarendon, 1984.

[83] H. Ohta, Mater. Today 10 (2007) 44–49.

[84] L.F. Mattheiss, Phys. Rev. B 6 (1972) 4718–4740.

[85] T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, Phys. Rev. B 63 (2001) 113104.

[86] S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, Appl. Phys. Lett. 87 (2005) 092108.

[87] H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 392 (2005) 306–309.

[88] S. Bhansali, W. Khunsin, A. Chatterjee, J. Santiso, B. Abad, M. Martin-Gonzalez, G. Jakob, C.M. Sotomayor Torres, E. Chávez-Angel, Nanoscale Adv. 1 (2019) 3647–3653.

[89] L. Han, N. Van Nong, W. Zhang, L.T. Hung, T. Holgate, K. Tashiro, M. Ohtaki, N. Pryds, S. Linderoth, RSC Adv. 4 (2014) 12353.

[90] L. Han, S.H. Spangsdorf, N.V. Nong, L.T. Hung, Y.B. Zhang, H.N. Pham, Y.Z. Chen, A. Roch, L. Stepien, N. Pryds, RSC Adv. 6 (2016) 59565–59573.

[91] M. Ohtaki, R. Hayashi, in: 2006 25th Int. Conf. Thermoelectr., 2006, pp. 276–279.

[92] H. Colder, E. Guilmeau, C. Harnois, S. Marinel, R. Retoux, E. Savary, J. Eur. Ceram. Soc. 31 (2011) 2957–2963.

[93] K.-H. Jung, K. Hyoung Lee, W.-S. Seo, S.-M. Choi, Appl. Phys. Lett. 100 (2012) 253902.

[94] L. Li, Y. Liu, X. Qin, D. Li, J. Zhang, C. Song, L. Wang, J. Alloys Compd. 588 (2014) 562–567.

[95] Y. Chen, J. Liu, X. Li, Y. Li, W. Su, J. Li, L. Zhao, C. Wang, M. Lu, Phys. Status Solidi A 215 (2018) 1800459.

[96] N.V. Nong, M. Ohtaki, Solid State Commun. 139 (2006) 232–234.

[97] Y. Wang, Y. Sui, W. Su, J. Appl. Phys. 104 (2008) 093703.

[98] P. Thiel, J. Eilertsen, S. Populoh, G. Saucke, M. Döbeli, A. Shkabko, L. Sagarna, L. Karvonen, A. Weidenkaff, J. Appl. Phys. 114 (2013) 243707.

[99] A. Kosuga, Y. Isse, Y. Wang, K. Koumoto, R. Funahashi, J. Appl. Phys. 105 (2009) 093717.

[100] M. Bittner, N. Kanas, R. Hinterding, F. Steinbach, J. Räthel, M. Schrade, K. Wiik, M.-A. Einarsrud, A. Feldhoff, J. Power Sources 410–411 (2019) 143–151.

[101] L. Hao, J. Alloys Compd. (2017) 6.

[102] Y. Fan, X. Feng, W. Zhou, S. Murakami, K. Kikuchi, N. Nomura, L. Wang, W. Jiang, A. Kawasaki, J. Eur. Ceram. Soc. 38 (2018) 507–513.

[103] M. Yu, T. Saunders, S. Grasso, A. Mahajan, H. Zhang, M.J. Reece, Scr. Mater. 146 (2018) 241–245.

[104] F.C. Walsh, R.G.A. Wills, Electrochimica Acta 55 (2010) 6342–6351.

[105] A.F. Arif, R. Balgis, T. Ogi, F. Iskandar, A. Kinoshita, K. Nakamura, K. Okuyama, Sci. Rep. 7 (2017).

[106] B.-O. Marinder, Angew. Chem. Int. Ed. Engl. 25 (1986) 431–442.

[107] A. Magneli, Pure Appl. Chem (1978) 1261–1271.

[108] M. Backhaus-Ricoult, J. Rustad, L. Moore, C. Smith, J. Brown, Appl. Phys. A 116 (2014) 433–470.

[109] H. Engell -J, Non-Stoichiometric Compounds, Academic Press, New York, 1964.

[110] A.D. Wadsley, Nature (1966) 581–583.

[111] I. Tsuyumoto, J. Am. Ceram. Soc (2006) 2301–2303.

[112] J.K. Tang, J. Phys. (2009) 205703.

[113] Y. Lu, Mater. Trans. (2006) 1449–1452.

[114] N.A. Deskins, J. Phys. Chem. C. (2008) 346–358.

[115] L.R. Sheppard, J. Phys. Chem. C. (2008) 611–617.

[116] G. Cerretti, M. Schrade, X. Song, B. Balke, H. Lu, T. Weidner, I. Lieberwirth, M. Panthöfer, T. Norby, W. Tremel, J. Mater. Chem. A 5 (2017) 9768–9774.

[117] C.P. Heinrich, M. Schrade, G. Cerretti, I. Lieberwirth, P. Leidich, A. Schmitz, H. Fjeld, E. Mueller, T.G. Finstad, T. Norby, W. Tremel, Mater. Horiz. 2 (2015) 519–527.

[118] B. Ingham, S.C. Hendy, S.V. Chong, J.L. Tallon, Phys Rev B 72 (2005).

[119] G. Kieslich, I. Veremchuk, I. Antonyshyn, W.G. Zeier, C.S. Birkel, K. Weldert, C.P. Heinrich, E. Visnow, M. Panthöfer, U. Burkhardt, Y. Grin, W. Tremel, Phys. Chem. Chem. Phys. 15 (2013) 15399.

[120] D.B. Migas, V.L. Shaposhnikov, V.E. Borisenko, J. Appl. Phys. 108 (2010) 093714.

[121] O. Guillon, J. Gonzalez‐Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16 (2014) 830–849.

[122] M. Tokita, Nanotechnologies Russ. 10 (2015) 261–267.

[123] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41 (2006) 763–777.

[124] W.-T. Chiu, C.-L. Chen, Y.-Y. Chen, Sci. Rep. 6 (2016).

[125] Y. Li, Y. Bando, D. Golberg, Adv. Mater. 15 (2003) 1294–1296.

[126] S. Shi, X. Xue, P. Feng, Y. Liu, H. Zhao, T. Wang, J. Cryst. Growth 310 (2008) 462– 466.

[127] W. Sahle, J. Solid State Chem. 45 (1982) 324–333.

[128] W. Sahle, J. Solid State Chem. 45 (1982) 334–342.

[129] G. Kieslich, I. Veremchuk, I. Antonyshyn, W.G. Zeier, C.S. Birkel, K. Weldert, C.P. Heinrich, E. Visnow, M. Panthöfer, U. Burkhardt, Y. Grin, W. Tremel, Phys. Chem. Chem. Phys. 15 (2013) 15399.

[130] D.R. Clarke, Surf. Coat. Technol. 163–164 (2003) 67–74.

[131] E.S. Toberer, A. Zevalkink, G.J. Snyder, J Mater Chem 21 (2011) 15843–15852.

[132] D.V. Dudina, A.K. Mukherjee, J. Nanomater. 2013 (2013) 625218.

[133] G. Franceschin, T. Gaudisson, N. Menguy, R. Valenzuela, F. Mazaleyrat, S. Ammar, Sci. Rep. 9 (2019) 14119.

[134] S.-K. Sun, G.-J. Zhang, W.-W. Wu, J.-X. Liu, J. Zou, T. Suzuki, Y. Sakka, Int. J. Refract. Met. Hard Mater. 43 (2014) 42–45.

[135] A. Polaczek, M. Pekala, Z. Obuszko, J. Phys. Condens. Matter 6 (1994) 7909–7919.

[136] F. Kaiser, P. Simon, U. Burkhardt, B. Kieback, Y. Grin, I. Veremchuk, Crystals 7 (2017) 271.

[137] J. Pfeifer, E. Badaljan, P. Tekula-Buxbaum, T. Kova´cs, O. Geszti, A.L. To´th, H.-J. Lunk, J. Cryst. Growth 169 (1996) 727–733.

[138] S. Shi, X. Xue, P. Feng, Y. Liu, H. Zhao, T. Wang, J. Cryst. Growth 310 (2008) 462– 466.

[139] A.L. Patterson, Phys Rev 56 (1939) 978–982.

[140] H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, (2015) 6.

[141] G. Kieslich, W. Tremel, 1 Functional Inorganic and Hybrid Materials Group, Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, UK;, AIMS Mater. Sci. 1 (2014) 184–190.

[142] D.B. Migas, V.L. Shaposhnikov, V.E. Borisenko, J. Appl. Phys. 108 (2010) 093714.

[143] Y. Lu, Y. Matsuda, K. Sagara, L. Hao, T. Otomitsu, H. Yoshida, Adv. Mater. Res. 415–417 (2011) 1291–1296.

[144] S.A. Mulenko, N.T. Gorbachuk, N. Stefan, Int Res J Nanosci Nanotechnol 1 (2014) 008–016.

[145] G. Kieslich, U. Burkhardt, C.S. Birkel, I. Veremchuk, J.E. Douglas, M.W. Gaultois, I. Lieberwirth, R. Seshadri, G.D. Stucky, Y. Grin, W. Tremel, J. Mater. Chem. A 2 (2014) 13492.

[146] K. Fuda, T. Shoji, S. Kikuchi, Y. Kunihiro, S. Sugiyama, J. Electron. Mater. 42 (2013) 2209–2213.

[147] A. Nag, V. Shubha, J. Electron. Mater. 43 (2014) 962–977.

[148] O. Caballero-Calero, R. D’Agosta, ECS J. Solid State Sci. Technol. 6 (2017) N3065– N3079.

[149] M. Gaikwad, D. Shevade, A. Kadam, B. Shubham, (2016).

[150] M. Mikami, K. Ozaki, J. Phys. Conf. Ser. 379 (2012) 012006.

[151] M. Ohtaki, K. Araki, Aluminum-Containing Zinc Oxide-Based n-Type Thermoelectric Conversion Material, Google Patents, 2013.

[152] G. Kieslich, C.S. Birkel, J.E. Douglas, M. Gaultois, I. Veremchuk, R. Seshadri, G.D. Stucky, Y. Grin, W. Tremel, J. Mater. Chem. A 1 (2013) 13050.

[153] L. Dong, H. Chen, Y. Gan, Y. Wang, X. Dong, S. Peng, Chin. Sci. Bull. 58 (2013) 2924–2926.

[154] C.P. Heinrich, M. Schrade, G. Cerretti, I. Lieberwirth, P. Leidich, A. Schmitz, H. Fjeld, E. Mueller, T.G. Finstad, T. Norby, W. Tremel, Mater Horiz 2 (2015) 519–527.

[155] M. Backhaus-Ricoult, J.R. Rustad, D. Vargheese, I. Dutta, K. Work, J. Electron. Mater. 41 (2012) 1636–1647.

[156] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751–767.

[157] M. Ohtaki, K. Araki, J. Ceram. Soc. Jpn. 119 (2011) 813–816.

[158] S. Hirata, M. Ohtaki, K. Watanabe, Ceram. Int. 46 (2020) 25964–25969.

[159] S. Yazdani, M.T. Pettes, Nanotechnology 29 (2018) 432001.

[160] K. Suekuni, C.H. Lee, H.I. Tanaka, E. Nishibori, A. Nakamura, H. Kasai, H. Mori, H. Usui, M. Ochi, T. Hasegawa, M. Nakamura, S. Ohira‐Kawamura, T. Kikuchi, K. Kaneko, H. Nishiate, K. Hashikuni, Y. Kosaka, K. Kuroki, T. Takabatake, Adv. Mater. 30 (2018) 1706230.

[161] M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Chem. Mater. 25 (2013) 2911–2920.

[162] G. Kieslich, G. Cerretti, I. Veremchuk, R.P. Hermann, M. Panthöfer, J. Grin, W. Tremel, Phys. Status Solidi A 213 (2016) 808–823.

[163] S. Harada, K. Tanaka, H. Inui, J. Appl. Phys. 108 (2010) 83703.

[164] M. Yu, T. Saunders, S. Grasso, A. Mahajan, H. Zhang, M.J. Reece, Scr. Mater. 146 (2018) 241–245.

[165] R. Pickering, R.J.D. Tilley, J. Solid State Chem. 16 (1976) 247–255.

[166] G. Kieslich, I. Veremchuk, I. Antonyshyn, W.G. Zeier, C.S. Birkel, K. Weldert, C.P. Heinrich, E. Visnow, M. Panthöfer, U. Burkhardt, Y. Grin, W. Tremel, Phys. Chem. Chem. Phys. 15 (2013) 15399.

[167] D.B. Migas, V.L. Shaposhnikov, V.E. Borisenko, J. Appl. Phys. 108 (2010) 93714.

[168] E.S. Toberer, A. Zevalkink, G.J. Snyder, J. Mater. Chem. 21 (2011) 15843.

[169] W. Sahle, J. Solid State Chem. 45 (1982) 324–333.

[170] W. Sahle, J. Solid State Chem. 45 (1982) 334–342.

[171] R.D. Shannon, Acta Crystallogr. Sect. A 32 (1976) 751–767.

[172] H. Wang, S. Bai, L. Chen, A. Cuenat, G. Joshi, H. Kleinke, J. König, H.W. Lee, J. Martin, M.W. Oh, W.D. Porter, Z. Ren, J. Salvador, J. Sharp, P. Taylor, A.J. Thompson, Y.C. Tseng, J. Electron. Mater. 44 (2015) 4482–4491.

[173] H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3 (2015) 41506.

[174] G. Kieslich, C.S. Birkel, J.E. Douglas, M. Gaultois, I. Veremchuk, R. Seshadri, G.D. Stucky, Y. Grin, W. Tremel, J. Mater. Chem. A 1 (2013) 13050.

[175] F. Kaiser, P. Simon, U. Burkhardt, B. Kieback, Y. Grin, I. Veremchuk, Crystals 7 (2017) 271.

[176] M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79 (1996) 1816–1818.

[177] H.J. Goldsmid, Introduction to Thermoelectricity, Springer Berlin Heidelberg, New York, 2016.

参考文献をもっと見る