リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「運動時のアンモニア代謝とパフォーマンスに関する研究 : 骨格筋アンモニアトランスポーターの関与」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

運動時のアンモニア代謝とパフォーマンスに関する研究 : 骨格筋アンモニアトランスポーターの関与

武田, 絋平 筑波大学 DOI:10.15068/0002000712

2021.07.27

概要

運動パフォーマンスを左右する要因は数多くあるが、1/100、1cm という僅かな差で勝敗が決まる競技を行うアスリートにとって、特に「疲労」によるパフォーマンスの低下は重大な問題である。アスリートはその僅かな差を埋めるため、また差をつけるため、日夜トレーニングに励んでいる。一言に「疲労」といっても収縮装置である骨格筋をはじめとする身体的「疲労」や、判断力や気分など精神的「疲労」などがあり、さらにこれら疲労に影響する要因が数多く存在し、その多くは謎に包まれている。

運動による骨格筋の疲労は、Fletcharらが「筋収縮時には乳酸が生成される」と報告して以来[1]、乳酸がおもな疲労物質の一つだと考えられてきた。そこから、いかに乳酸を生成しないか、いかにすばやく除去できるかに焦点が当てられてきた。その後の研究で、乳酸には肝臓での糖新生[2]や心臓もしくは遅筋線維での TP 合成の基質としての役割があることが明らかとなり[3]、乳酸は単なる疲労物質であるという考えは変わりつつある。運動による疲労は、パフォーマンスを大きく左右する要因でありながら、さまざまな要素が絡んだ、複雑な概念であるため、骨格筋の肥大や遅筋化のメカニズムに比べ、まだ不明な点が多い。

運動時の疲労を招く要因の一つにアンモニアがある。1920 代に運動により血中濃度が上昇することが報告されていている[4]。アンモニアは骨格筋で TP再合成の過程で生成する代謝産物で、血流を介し全身の組織へ輸送され、中枢系・末梢系疲労を招くことが知られている。しかしながら、運動時のアンモニアについてはヒトを対象とした血中レベルの検討が多いため、実験動物を用いたものは少なく、乳酸のように研究は進んでいないのが現状である。そこで本研究は、運動時の疲労の要因の一つであるアンモニアとパフォーマンスに着目し、運動時の血中アンモニア上昇のメカニズムを探り、それを低下させることで運動パフォーマンス向上の一助となるよう検討を進めていく。

これまで、運動時のアンモニアとパフォーマンスについての検討は、トレーニングや栄養摂取による影響をみたものがほとんどであり、骨格筋でのアンモニア代謝についての報告は少ない。本研究では、アンモニア輸送に関わる分子であるアンモニアトランスポーターの hbg hcg 着目し運動時のアンモニア代謝について検討する。マウスに対する運動様式は、泳運動を採用した。泳運動はこれまでにも先行研究で使われており、運動と血中アンモニアに対する検討でよく採用されている運動様式である。そのメリットは、尾に付ける負荷の大きさで運動負荷を細かく調節でき、容易に血中乳酸値が 0M 超える高強度の運動をマウスに行わせることができる点、走運動のように運動を怠るマウスが現れにくく、すべてのマウスに対し、均一した運度負荷をかけることができる点である。

参考文献

[1] W.M. Fletcher, Lactic acid in amphibian muscle, J Physiol 35 (1907) 247-309.

[2] C. Ryan, K. Ferguson, J. Radziuk, Glucose dynamics and gluconeogenesis during and after prolonged swimming in rats, J Appl Physiol 74 (1993) 2404-2411.

[3] A. Bonen, Lactate transporters (MCT proteins) in heart and skeletal muscles, Med Sci Sports Exerc 32 (2000) 778-789.

[4] J.K. Parnas, Mozolowski, W.,, Über die Ammoniakbildung im Muskel und Ihren Zusammenhang mit Tätigkeit und Zustandsänderung, Journal of Molecular Medicine 6 (1927) 998-999.

[5] K. Sahlin, Metabolic factors in fatigue, Sports Med 13 (1992) 99-107.

[6] R.H. Fitts, E.M. Balog, Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue, Acta Physiol Scand 156 (1996) 169-181.

[7] J. Bergstrom, L. Hermansen, E. Hultman, B. Saltin, Diet, muscle glycogen and physical performance, Acta Physiol Scand 71 (1967) 140-150.

[8] L. Hermansen, E. Hultman, B. Saltin, Muscle glycogen during prolonged severe exercise, Acta Physiol Scand 71 (1967) 129-139.

[9] K. Sahlin, A. Katz, S. Broberg, Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise, Am J Physiol 259 (1990) C834-841.

[10] S.W. Olde Damink, N.E. Deutz, C.H. Dejong, P.B. Soeters, R. Jalan, Interorgan ammonia metabolism in liver failure, Neurochem Int 41 (2002) 177-188.

[11] P.C. Tullson, J. Bangsbo, Y. Hellsten, E.A. Richter, IMP metabolism in human skeletal muscle after exhaustive exercise, J Appl Physiol 78 (1995) 146-152.

[12] T. Hirai, Y. Minatogawa, A.M. Hassan, R. Kido, Metabolic inter-organ relations by exercise of fed rat: carbohydrates, ketone body, and nitrogen compounds in splanchnic vessels, Physiol Behav 57 (1995) 515-522.

[13] R.A. Meyer, R.L. Terjung, Differences in ammonia and adenylate metabolism in contracting fast and slow muscle, Am J Physiol 237 (1979) C111-118.

[14] G.A. Brooks, Amino acid and protein metabolism during exercise and recovery, Med Sci Sports Exerc 19 (1987) S150-156.

[15] J.M. Lowenstein, Ammonia production in muscle and other tissues: the purine nucleotide cycle, Physiol Rev 52 (1972) 382-414.

[16] N. Katunuma, M. Okada, Y. Nishii, Regulation of the urea cycle and TCA cycle by ammonia, Adv Enzyme Regul 4 (1966) 317-336.

[17] A. Worcel, M. Erecinska, Mechanism of inhibitory action of ammonia on the respiration of rat-liver mitochondria, Biochim Biophys Acta 65 (1962) 27-33.

[18] E.W. Banister, B.J. Cameron, Exercise-induced hyperammonemia: peripheral and central effects, Int J Sports Med 11 Suppl 2 (1990) S129-142.

[19] B.J. Mutch, E.W. Banister, Ammonia metabolism in exercise and fatigue: a review, Med Sci Sports Exerc 15 (1983) 41-50.

[20] D.W. McCandless, S. Schenker, Effect of acute ammonia intoxication on energy stores in the cerebral reticular activating system, Exp Brain Res 44 (1981) 325-330.

[21] B. Hindfelt, F. Plum, T.E. Duffy, Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts, J Clin Invest 59 (1977) 386-396.

[22] S.P. Bessman, A.N. Bessman, The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma, J Clin Invest 34 (1955) 622-628.

[23] M.P. Tyor, W.P. Wilson, Peripheral biochemical changes associated with the intravenous administration of ammonium salts in normal subjects, J Lab Clin Med 51 (1958) 592-599.

[24] L.T. Webster, Jr., G.J. Gabuzda, Ammonium uptake by the extremities and brain in hepatic coma, J Clin Invest 37 (1958) 414-424.

[25] O.P. Ganda, N.B. Ruderman, Muscle nitrogen metabolism in chronic hepatic insufficiency, Metabolism 25 (1976) 427-435.

[26] E.W. Banister, M.E. Allen, I.B. Mekjavic, A.K. Singh, B. Legge, B.J.C. Mutch, The Time Course of Ammonia and Lactate Accumulation in Blood During Bicycle Exercise, European Journal of Physiology and Occupational Physiology 51 (1983) 195-202.

[27] A. Urhausen, W. Kindermann, Blood ammonia and lactate concentrations during endurance exercise of differing intensities, Eur J Appl Physiol Occup Physiol 65 (1992) 209-214.

[28] H. Itoh, T. Ohkuwa, Ammonia and lactate in the blood after short-term sprint exercise, Eur J Appl Physiol Occup Physiol 62 (1991) 22-25.

[29] H. Itoh, T. Ohkuwa, Peak blood ammonia and lactate after submaximal, maximal and supramaximal exercise in sprinters and long-distance runners, Eur J Appl Physiol Occup Physiol 60 (1990) 271-276.

[30] A. Raggi, S. Ronco-Testoni, G. Ronca, Muscle AMP aminohydrolase. II. Distribution of AMP aminohydrolase, myokinase and creatine kinase activities in skeletal muscle, Biochim Biophys Acta 178 (1969) 619-622.

[31] W.W. Winder, R.L. Terjung, K.M. Baldwin, J.O. Holloszy, Effect of exercise on AMP deaminase and adenylosuccinase in rat skeletal muscle, Am J Physiol 227 (1974) 1411-1414.

[32] E. Jansson, G.A. Dudley, B. Norman, P.A. Tesch, ATP and IMP in single human muscle fibres after high intensity exercise, Clin Physiol 7 (1987) 337-345.

[33] A. de Haan, J.E. van Doorn, H.G. Westra, Effects of potassium + magnesium aspartate on muscle metabolism and force development during short intensive static exercise, Int J Sports Med 6 (1985) 44-49.

[34] P.D. Gollnick, R.B. Armstrong, W.L. Sembrowich, R.E. Shepherd, B. Saltin, Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise, J Appl Physiol 34 (1973) 615-618.

[35] K. Nazar, B. Dobrzynski, R. Lewicki, Relationship between plasma ammonia and blood lactate concentrations after maximal treadmill exercise in circumpubertal girls and boys, Eur J Appl Physiol Occup Physiol 65 (1992) 246-250.

[36] R.H. Barnes, B.A. Labadan, B. Siyamoglu, R.B. Bradfield, Effects of Exercise and Administration of Aspartic Acid on Blood Ammonia in the Rat, Am J Physiol 207 (1964) 1242-1246.

[37] F. Trudeau, R. Murphy, Effects of potassium-aspartate salt administration on glycogen use in the rat during a swimming stress, Physiol Behav 54 (1993) 7-12.

[38] R. Hems, B.D. Ross, M.N. Berry, H.A. Krebs, Gluconeogenesis in the perfused rat liver, Biochem J 101 (1966) 284-292.

[39] M.M. Adeva, G. Souto, N. Blanco, C. Donapetry, Ammonium metabolism in humans, Metabolism 61 (2012) 1495-1511.

[40] N. Chatauret, P. Desjardins, C. Zwingmann, C. Rose, K.V. Rao, R.F. Butterworth, Direct molecular and spectroscopic evidence for increased ammonia removal capacity of skeletal muscle in acute liver failure, J Hepatol 44 (2006) 1083-1088.

[41] C. Denis, M.T. Linossier, D. Dormois, M. Cottier-Perrin, A. Geyssant, J.R. Lacour, Effects of endurance training on hyperammonaemia during a 45-min constant exercise intensity, Eur J Appl Physiol Occup Physiol 59 (1989) 268-272.

[42] J. Majerczak, M. Korostynski, Z. Nieckarz, Z. Szkutnik, K. Duda, J.A. Zoladz,Endurance training decreases the non-linearity in the oxygen uptake-power output relationship in humans, Exp Physiol 97 (2012) 386-399.

[43] R.J. Snow, M.J. McKenna, M.F. Carey, M. Hargreaves, Sprint training attenuates plasma ammonia accumulation following maximal exercise, Acta Physiol Scand 144 (1992) 395-396.

[44] Y. Hellsten-Westing, P.D. Balsom, B. Norman, B. Sjodin, The effect of high-intensity training on purine metabolism in man, Acta Physiol Scand 149 (1993) 405-412.

[45] Z. Liu, J. Peng, R. Mo, C. Hui, C.H. Huang, Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals, J Biol Chem 276 (2001) 1424-1433.

[46] M.F. James, J.M. Smith, S.J. Boniface, C.L. Huang, R.A. Leslie, Cortical spreading depression and migraine: new insights from imaging?, Trends Neurosci 24 (2001) 266-271.

[47] Z. Liu, Y. Chen, R. Mo, C. Hui, J.F. Cheng, N. Mohandas, C.H. Huang, Characterization of human RhCG and mouse Rhcg as novel nonerythroid Rh glycoprotein homologues predominantly expressed in kidney and testis, J Biol Chem 275 (2000) 25641-25651.

[48] N.D. Avent, M.E. Reid, The Rh blood group system: a review, Blood 95 (2000) 375-387.

[49] J.P. Cartron, RH blood group system and molecular basis of Rh-deficiency, Baillieres Best Pract Res Clin Haematol 12 (1999) 655-689.

[50] K.H. Han, K. Mekala, V. Babida, H.Y. Kim, M.E. Handlogten, J.W. Verlander, I.D. Weiner, Expression of the gas-transporting proteins, Rh B glycoprotein and Rh C glycoprotein, in the murine lung, Am J Physiol Lung Cell Mol Physiol 297 (2009) L153-163.

[51] M.E. Handlogten, S.P. Hong, L. Zhang, A.W. Vander, M.L. Steinbaum, M. Campbell-Thompson, I.D. Weiner, Expression of the ammonia transporter proteins Rh B glycoprotein and Rh C glycoprotein in the intestinal tract, Am J Physiol Gastrointest Liver Physiol 288 (2005) G1036-1047.

[52] H.W. Lee, J.W. Verlander, M.E. Handlogten, K.H. Han, P.S. Cooke, I.D. Weiner, Expression of the rhesus glycoproteins, ammonia transporter family members, RHCG and RHBG in male reproductive organs, Reproduction 146 (2013) 283-296.

[53] S. Biver, H. Belge, S. Bourgeois, P. Van Vooren, M. Nowik, S. Scohy, P. Houillier,J. Szpirer, C. Szpirer, C.A. Wagner, O. Devuyst, A.M. Marini, A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility, Nature 456 (2008) 339-343.

[54] I.D. Weiner, R.T. Miller, J.W. Verlander, Localization of the ammonium transporters, Rh B glycoprotein and Rh C glycoprotein, in the mouse liver, Gastroenterology 124 (2003) 1432-1440.

[55] I.D. Weiner, J.W. Verlander, Ammonia transport in the kidney by Rhesus glycoproteins, Am J Physiol Renal Physiol 306 (2014) F1107-1120.

[56] M. Vaubourdolle, A. Jardel, C. Coudray-Lucas, O.G. Ekindjian, J. Agneray, L. Cynober, Fate of enterally administered ornithine in healthy animals: interactions with alpha-ketoglutarate, Nutrition 5 (1989) 183-187.

[57] W.J. Visek, Arginine needs, physiological state and usual diets. A reevaluation, J Nutr 116 (1986) 36-46.

[58] O. Tangphao, M. Grossmann, S. Chalon, B.B. Hoffman, T.F. Blaschke, Pharmacokinetics of intravenous and oral L-arginine in normal volunteers, Br J Clin Pharmacol 47 (1999) 261-266.

[59] S.M. Bode-Boger, R.H. Boger, A. Galland, D. Tsikas, J.C. Frolich, L-arginine-induced vasodilation in healthy humans: pharmacokinetic-pharmacodynamic relationship, Br J Clin Pharmacol 46 (1998) 489-497.

[60] E. Curis, I. Nicolis, C. Moinard, S. Osowska, N. Zerrouk, S. Benazeth, L. Cynober, Almost all about citrulline in mammals, Amino Acids 29 (2005) 177-205.

[61] S. Osowska, T. Duchemann, S. Walrand, A. Paillard, Y. Boirie, L. Cynober, C. Moinard, Citrulline modulates muscle protein metabolism in old malnourished rats, Am J Physiol Endocrinol Metab 291 (2006) E582-586.

[62] K. Akashi, C. Miyake, A. Yokota, Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger, FEBS Lett 508 (2001) 438-442.

[63] S. Demura, T. Yamada, S. Yamaji, M. Komatsu, K. Morishita, The effect of L-ornithine hydrochloride ingestion on performance during incremental exhaustive ergometer bicycle exercise and ammonia metabolism during and after exercise, Eur J Clin Nutr 64 (2010) 1166-1171.

[64] T. Sugino, T. Shirai, Y. Kajimoto, O. Kajimoto, L-ornithine supplementation attenuates physical fatigue in healthy volunteers by modulating lipid and amino acid metabolism, Nutr Res 28 (2008) 738-743.

[65] C. Denis, D. Dormois, M.T. Linossier, J.L. Eychenne, P. Hauseux, J.R. Lacour, Effect of arginine aspartate on the exercise-induced hyperammoniemia in humans: a two periods cross-over trial, Arch Int Physiol Biochim Biophys 99 (1991) 123-127.

[66] P.C. Colombani, R. Bitzi, P. Frey-Rindova, W. Frey, M. Arnold, W. Langhans, C. Wenk, Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run, Eur J Nutr 38 (1999) 263-270.

[67] B. Eto, G. Peres, G. Le Moel, Effects of an ingested glutamate arginine salt on ammonemia during and after long lasting cycling, Arch Int Physiol Biochim Biophys 102 (1994) 161-162.

[68] M.O. Meneguello, J.R. Mendonca, A.H. Lancha, Jr., L.F. Costa Rosa, Effect of arginine, ornithine and citrulline supplementation upon performance and metabolism of trained rats, Cell Biochem Funct 21 (2003) 85-91.

[69] H.H. Schmidt, H. Nau, W. Wittfoht, J. Gerlach, K.E. Prescher, M.M. Klein, F. Niroomand, E. Bohme, Arginine is a physiological precursor of endothelium-derived nitric oxide, Eur J Pharmacol 154 (1988) 213-216.

[70] U. Frandsen, M. Lopez-Figueroa, Y. Hellsten, Localization of nitric oxide synthase in human skeletal muscle, Biochem Biophys Res Commun 227 (1996) 88-93.

[71] Z. Grozdanovic, G. Gosztonyi, R. Gossrau, Nitric oxide synthase I (NOS-I) is deficient in the sarcolemma of striated muscle fibers in patients with Duchenne muscular dystrophy, suggesting an association with dystrophin, Acta Histochem 98 (1996) 61-69.

[72] J.S. Stamler, G. Meissner, Physiology of nitric oxide in skeletal muscle, Physiol Rev 81 (2001) 209-237.

[73] S. Moncada, R.M. Palmer, E.A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol Rev 43 (1991) 109-142.

[74] R.M. Palmer, A.G. Ferrige, S. Moncada, Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature 327 (1987) 524-526.

[75] Y.C. Luiking, M.P. Engelen, N.E. Deutz, Regulation of nitric oxide production in health and disease, Curr Opin Clin Nutr Metab Care 13 (2010) 97-104.

[76] T.W. Balon, J.L. Nadler, Nitric oxide release is present from incubated skeletal muscle preparations, J Appl Physiol 77 (1994) 2519-2521.

[77] A.M. Jones, D.P. Wilkerson, I.T. Campbell, Nitric oxide synthase inhibition with L-NAME reduces maximal oxygen uptake but not gas exchange threshold during incremental cycle exercise in man, J Physiol 560 (2004) 329-338.

[78] R.A. Olek, E. Ziemann, T. Grzywacz, S. Kujach, M. Luszczyk, J. Antosiewicz, R. Laskowski, A single oral intake of arginine does not affect performance during repeated Wingate anaerobic test, J Sports Med Phys Fitness 50 (2010) 52-56.

[79] T.S. Alvares, C.A. Conte, V.M. Paschoalin, J.T. Silva, M. Meirelles Cde, Y.N. Bhambhani, P.S. Gomes, Acute l-arginine supplementation increases muscle blood volume but not strength performance, Appl Physiol Nutr Metab 37 (2012) 115-126.

[80] T.H. Liu, C.L. Wu, C.W. Chiang, Y.W. Lo, H.F. Tseng, C.K. Chang, No effect of short-term arginine supplementation on nitric oxide production, metabolism and performance in intermittent exercise in athletes, J Nutr Biochem 20 (2009) 462-468.

[81] R. Bescos, C. Gonzalez-Haro, P. Pujol, F. Drobnic, E. Alonso, M.L. Santolaria, O. Ruiz, M. Esteve, P. Galilea, Effects of dietary L-arginine intake on cardiorespiratory and metabolic adaptation in athletes, Int J Sport Nutr Exerc Metab 19 (2009) 355-365.

[82] K.L. Sunderland, F. Greer, J. Morales, VO2max and ventilatory threshold of trained cyclists are not affected by 28-day L-arginine supplementation, J Strength Cond Res 25 (2011) 833-837.

[83] A.J. Maxwell, H.V. Ho, C.Q. Le, P.S. Lin, D. Bernstein, J.P. Cooke, L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production, J Appl Physiol 90 (2001) 933-938.

[84] R.C. Hickner, C.J. Tanner, C.A. Evans, P.D. Clark, A. Haddock, C. Fortune, H. Geddis, W. Waugh, M. McCammon, L-citrulline reduces time to exhaustion and insulin response to a graded exercise test, Med Sci Sports Exerc 38 (2006) 660-666.

[85] W.J. Hartman, P.M. Torre, R.L. Prior, Dietary citrulline but not ornithine counteracts dietary arginine deficiency in rats by increasing splanchnic release of citrulline, J Nutr 124 (1994) 1950-1960.

[86] S.J. Bailey, P.G. Winyard, A. Vanhatalo, J.R. Blackwell, F.J. DiMenna, D.P. Wilkerson, A.M. Jones, Acute L-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance, J Appl Physiol 109 (2010) 1394-1403.

[87] I.D. Weiner, J.W. Verlander, Renal and hepatic expression of the ammonium transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein, Acta Physiol Scand 179 (2003) 331-338.

[88] R.M. Seshadri, J.D. Klein, S. Kozlowski, J.M. Sands, Y.H. Kim, K.H. Han, M.E. Handlogten, J.W. Verlander, I.D. Weiner, Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis, Am J Physiol Renal Physiol 290 (2006) F397-408.

[89] M. Mourtzakis, T.E. Graham, Glutamate ingestion and its effects at rest and during exercise in humans, J Appl Physiol (1985) 93 (2002) 1251-1259.

[90] A.J. Wagenmakers, E.J. Beckers, F. Brouns, H. Kuipers, P.B. Soeters, G.J. van der Vusse, W.H. Saris, Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise, Am J Physiol 260 (1991) E883-890.

[91] G. Gremion, P. Pahud, C. Gobelet, [Arginine aspartate and muscular activity. II], Schweiz Z Sportmed 37 (1989) 241-246.

[92] H. Mandel, N. Levy, S. Izkovitch, S.H. Korman, Elevated plasma citrulline and arginine due to consumption of Citrullus vulgaris (watermelon), J Inherit Metab Dis 28 (2005) 467-472.

[93] A. Barbul, Arginine: biochemistry, physiology, and therapeutic implications, JPEN J Parenter Enteral Nutr 10 (1986) 227-238.

[94] G.A. Dudley, P.C. Tullson, R.L. Terjung, Influence of mitochondrial content on the sensitivity of respiratory control, J Biol Chem 262 (1987) 9109-9114.

[95] S. Lo, J.C. Russell, A.W. Taylor, Determination of glycogen in small tissue samples, J Appl Physiol 28 (1970) 234-236.

[96] H.J. Green, R. Helyar, M. Ball-Burnett, N. Kowalchuk, S. Symon, B. Farrance, Metabolic adaptations to training precede changes in muscle mitochondrial capacity, J Appl Physiol (1985) 72 (1992) 484-491.

[97] S. Terada, T. Yokozeki, K. Kawanaka, K. Ogawa, M. Higuchi, O. Ezaki, I. Tabata, Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle, J Appl Physiol (1985) 90 (2001) 2019-2024.

[98] Y. Ogura, H. Naito, J. Aoki, J. Uchimaru, T. Sugiura, S. Katamoto, Sprint-interval training-induced alterations of Myosin heavy chain isoforms and enzyme activities in rat diaphragm: effect of normobaric hypoxia, Jpn J Physiol 55 (2005) 309-316.

[99] M.J. Gibala, S.L. McGee, Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain?, Exerc Sport Sci Rev 36 (2008) 58-63.

[100] R.A. Meyer, G.A. Dudley, R.L. Terjung, Ammonia and IMP in different skeletal muscle fibers after exercise in rats, J Appl Physiol Respir Environ Exerc Physiol 49 (1980) 1037-1041.

[101] D. Bendahan, J.P. Mattei, B. Ghattas, S. Confort-Gouny, M.E. Le Guern, P.J. Cozzone, Citrulline/malate promotes aerobic energy production in human exercising muscle, Br J Sports Med 36 (2002) 282-289.

[102] T. Hayashi, P.A. Juliet, H. Matsui-Hirai, A. Miyazaki, A. Fukatsu, J. Funami, A. Iguchi, L.J. Ignarro, l-Citrulline and l-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits, Proc Natl Acad Sci U S A 102 (2005) 13681-13686.

[103] A. Sano, K. Koshinaka, N. Abe, M. Morifuji, J. Koga, E. Kawasaki, K. Kawanaka, The effect of high-intensity intermittent swimming on post-exercise glycogen supercompensation in rat skeletal muscle, J Physiol Sci 62 (2012) 1-9.

[104] K. Kawanaka, I. Tabata, A. Tanaka, M. Higuchi, Effects of high-intensity intermittent swimming on glucose transport in rat epitrochlearis muscle, J Appl Physiol (1985) 84 (1998) 1852-1857.

[105] D.J. Wilkinson, N.J. Smeeton, P.W. Watt, Ammonia metabolism, the brain and fatigue; revisiting the link, Prog Neurobiol 91 (2010) 200-219.

[106] Y. Hotta, A. Shiota, T. Kataoka, M. Motonari, Y. Maeda, M. Morita, K. Kimura, Oral L-citrulline supplementation improves erectile function and penile structure in castrated rats, Int J Urol 21 (2014) 608-612.

[107] A. Shiota, Y. Hotta, T. Kataoka, M. Morita, Y. Maeda, K. Kimura, Oral L-citrulline supplementation improves erectile function in rats with acute arteriogenic erectile dysfunction, J Sex Med 10 (2013) 2423-2429.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る