リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tuning and fixing of uniform Bragg reflection color of gel-immobilized colloidal photonic crystal films」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tuning and fixing of uniform Bragg reflection color of gel-immobilized colloidal photonic crystal films

Iwasawa Yuma Tajima Hiroyuki Kanai Toshimitsu 10442948 横浜国立大学

2021.06.16

概要

We demonstrate the facile tuning of uniform Bragg reflection color from red to blue by uniaxial compression of gel films containing single-crystalline loosely packed colloidal crystals. The tuned colors can be fixed by photopolymerization of a polymer precursor solution contained in the compressed gel films.

この論文で使われている画像

参考文献

1.

Sakoda K. Optical Properties of Photonic Crystals. Springer-Verlag: Berlin; 2001.

2.

Velikov KP, Christova CG, Dullens RPA, van Blaaderen A. Layer-by-layer growth of binary

colloidal crystals. Science. 2002;296:106–109.

3.

Furumi S, Fudouzi H, Sawada T. Self‐organized colloidal crystals for photonics and laser

applications. Laser & Photon Rev. 2010;4:205–220.

4. Kanai T, Sano K, Yano H, Sawada T. Independent control of optical stop-band wavelength and

width of colloidal photonic crystals. Colloid Surf A. 2016;506:586–590.

5.

Foulger SH, Jiang P, Lattam A, Smith DW, Ballato JJ, Dausch DE, et al. Photonic Crystal

Composites with Reversible High‐Frequency Stop Band Shifts. Adv Mater. 2003;15:685–689.

6.

Fudouzi H, Xia YN. Photonic Papers and Inks: Color Writing with Colorless Materials. Adv Mater.

2003;15:892–896.

7. Kanai T, Yano H, Kobayashi N, Sawada T. Enhancement of thermosensitivity of gel-immobilized

tunable colloidal photonic crystals with anisotropic contraction. ACS Macro Lett. 2017;6:1196–

1200.

8. Sakiyama T, Takata H, Toga T, Nakanishi K. pH‐sensitive shrinking of a dextran sulfate/chitosan

complex gel and its promotion effect on the release of polymeric substances. J Appl Polym Sci.

2001;81:667–674.

9. Sugiyama H, Sawada T, Yano H, Kanai T. Linear thermosensitivity of gel-immobilized tunable

colloidal photonic crystals. J Mater Chem C. 2013;1:6103–6106.

10. Toyotama A, Kanai T, Sawada T, Yamanaka J, Ito K, Kitamura K. Gelation of colloidal crystals

without degradation in their transmission quality and chemical tuning. Langmuir. 2005;21:10268–

10270.

11. Furumi S, Kanai T, Sawada T. Widely tunable lasing in a colloidal crystal gel film permanently

stabilized by an ionic liquid. Adv Mater. 2011;23:3815–3820.

12. Sugao Y, Onda S, Toyotama A, Takiguchi Y, Sawada T, Hara S, et al. Gelled colloidal crystals as

tunable optical filters for spectrophotometers. Jpn J Appl Phys. 2016;55:087301–1–6.

13. Holtz J, Asher SA. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing

materials. Nature. 1997;389:829–832.

14. Saito H, Takeoka Y, Watanabe M. Simple and precision design of porous gel as a visible indicator for

ionic species and concentration. Chem Commun. 2003;2126–2127.

15. Iwayama Y, Yamanaka J, Takiguchi Y, Takasaka M, Ito K, Shinohara T, et al. Optically tunable

gelled photonic crystal covering almost the entire visible light wavelength region. Langmuir.

2003;19:977–980.

16. Tajima H, Amano A, Kanai T. Elastomer-immobilized tunable colloidal photonic crystal films

with high optical qualities and high maximum strain. Mater Adv. DOI: 10.1039/d1ma00133g.

17. Sawada T, Suzuki Y, Toyotama A, Iyi N. Quick fabrication of gigantic single-crystalline colloidal

crystals for photonic crystal applications. Jpn J Appl Phys. 2001;40:L1226–L1228.

18. Kanai T, Sawada T, Toyotama A, Kitamura K. Air-pulse-drive fabrication of photonic crystal films

of colloids with high spectral quality. Adv Funct Mater. 2005;15:25–29.

19. Kanai T, Sawada T, Kitamura K. Quantitative evaluation of spatial uniformity in spectral

characteristics for large-area colloidal crystals. Chem Lett. 2005;34:904–905.

Fig. 1 Schematic diagram of the mechanical compression apparatus used for tuning the Bragg

wavelength of the gel-immobilized colloidal crystal film. (A) Side view and (B) top view (a:

micrometer, b: quartz substrate, c: gel film, d: spring).

Fig. 2 (A) Photographs and (B) reflection spectra for the gel-immobilized colloidal crystal film at

various distances between the substrates. (C) Plot of the Bragg wavelength as a function of the

distance between the substrates. The solid line is a calculated curve. The inset represents the

enlarged graph.

Fig. 3 Reflection spectra and photographs of the solvent-free polymer films containing colloidal

crystals prepared at different distances between substrates of (A) 70 µm, (B) 82 µm, and (C) 92 µm.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る