リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Research on Physiological and Pathophysiological Functions of Chemokines for the Purpose of New Drug Development Targeting Chemokine Signaling in a Chronic Kidney Disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Research on Physiological and Pathophysiological Functions of Chemokines for the Purpose of New Drug Development Targeting Chemokine Signaling in a Chronic Kidney Disease

兼光, 直敏 筑波大学 DOI:10.15068/0002002173

2021.12.03

概要

The immune system detects pathogens and irregular cells within the organism and protects it using innate and adaptive immune responses. Homeostasis of immune subsystems is maintained by a wide range of immune cells. Once the immune system detects pathogens, inflammatory cells and proteins are induced by the system, leading to inflammation. To produce these homeostatic and inflammatory status, various immune cells continuously migrate between lymphoid and non-lymphoid organs. This surveillance system of immune cells is coordinated by chemokines, proteins that induce immune cell migration and are responsible for homeostasis of immune systems and inflammatory reactions of the organism. Some chemokines are reportedly involved in immune dysfunctions in diseases such as autoimmune diseases and cancers. Therefore, modulating the pathophysiological functions of chemokines may be a new approach to drug development for certain diseases. To justify this approach, investigating physiological and pathophysiological functions of chemokines under several circumstances are considered crucial.

Chemokines induce biological functions by binding to cellular receptors. Receptor-mediated signal transduction through chemokine receptors is important for lymphocyte trafficking across high endothelial venules (HEVs). However, the mode of action of individual chemokines expressed in the HEVs in lymphocyte trafficking remains unclear. In this study, CXCL13, a chemokine expressed in a substantial proportion of HEVs in both lymph nodes (LNs) and Peyer patches (PPs), was found to functions as an arrest chemokine for B cells. In a whole-mount analysis of mesenteric LNs (MLNs), B cells, unlike T cells, adhere poorly to HEVs of CXCL13-null mice. However, adhesion of B cells to the CXCL13-null HEVs is significantly restored when CXCL13 is added to the MLNs by superfusion. In in vitro studies, CXCL13 activated the small guanosine triphosphatase (GTPase) Rap1 in B cells, and a deficiency of RAPL, the Rap1 effector molecule, caused a substantial reduction in B-cell adhesion to intercellular adhesion molecule 1 (ICAM-1) under shear-resistant conditions. CXCL13 also activates α4 integrin in B cells and induces adhesion of B cells to mucosal addressin cell adhesion molecule 1 (MAdCAM-1). Accordingly, CXCL13 is identified as an arrest chemokine for B cells in HEVs and plays an important role in B-cell trafficking to PPs and MLNs.

As discussed above, some chemokines are agents of disease, which suggests that targeting chemokines may be an effective therapeutic approach. CXCL13 expression at tumor sites reportedly promotes migration of anti-tumor T cells expressing CXCR5. A combination treatment of CXCL13 and anti-PD-1-directed tumor therapy showed greater efficacy than their monotherapies in an animal study, suggesting that CXCL13 or a CXCR5 agonist could be a therapeutic option for tumor. However, it seemed difficult to pursue CXCL13/CXCR5-tageting drug development based on available in-house data and external reports after investigations of the chapter 1. On the other hand, other chemokines and their receptors are also known as a target of certain drugs. Several chemokines and their receptors-targeting drugs have been approved by the FDA: maraviroc (a CCR5 blocker for HIV-1 infection), plerixafor (a CXCR4 antagonist for non-Hodgkin’s lymphoma and multiple myeloma), and mogamulizmab (an anti-CCR4 monoclonal antibody for mycosis fungoides or Sézary syndrome). In further investigations to seek chemokine-related targets, there are reports showing that CCL2 and its corresponding receptor, CCR2, are also involved in a wide variety of diseases, and a pathophysiological function of CCL2/CCR2 axis is considered one of the reasonable potential targets for drug development researches.

Glomeruli and renal tubule injury in chronic kidney disease (CKD) is reported to involve macrophage activation through interaction between CCL2 and its receptor, CCR2. Studies of the effects of inhibiting CCL2/CCR2 signaling, using CCR2 inhibitors and anti-CCL2 antibodies, on kidney function in animals or humans with CKD have been reported. The activity of CCL2 is stabilized by replacement of its N-terminal glutamine with pyroglutamate (pE) by enzymes such as glutaminyl cyclase (QC) and isoQC. Through this process, pE-CCL2 becomes resistant to peptidases. I report here that inhibition of QC/isoQC using the QC/isoQC inhibitor PQ529 leads to the degradation of CCL2. This ameliorates CKD by reducing kidney inflammation in anti-glomerular basement membrane (GBM) antibody-induced glomerulonephritis in Wistar Kyoto (WKY) rats. Repeated oral administration of PQ529 (30 and 100 mg/kg, twice daily) for three weeks significantly reduced the CCL2 levels in serum and urine, and urinary protein excretion in a dose-dependent manner. The urinary protein and CCL2 levels in serum or urine were correlated. The expression of CD68, a macrophage marker, in the kidney cortex, and mononuclear infiltration into the tubulointerstitium, were reduced by the 3-week-treatment of PQ529. In addition, urinary KIM-1, β2 microglobulin, and clusterin levels decreased in PQ529-treated glomerulonephritis WKY rats, suggesting that inflammation in both the proximal and distal tubules was inhibited. It thus appears that PQ529 inhibits the progression of renal dysfunction by inhibiting the CCL2/CCR2 signaling. Inhibition of QC/isoQC may be a viable alternative therapeutic approach for treating glomerulonephritis and CKD patients.

この論文で使われている画像

参考文献

Ansel KM, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick JD, Browning JL, Lipp M, Cyster JG. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000 Jul 20;406(6793): 309-14.

Banba N, Nakamura T, Matsumura M, Kuroda H, Hattori Y, Kasai K. Possible relationship of monocyte chemoattractant protein-1 with diabetic nephropathy. Kidney Int. 2000 Aug;58(2): 684-90.

Berl T. Review: renal protection by inhibition of the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2009 Mar;10(1): 1-8.

Broxmeyer HE, Kim CH. Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol. 1999 Jul;27(7): 1113-23.

Broxmeyer HE, Kim CH, Cooper SH, Hangoc G, Hromas R, Pelus LM. Effects of CC, CXC, C, and CX3C chemokines on proliferation of myeloid progenitor cells, and insights into SDF-1-induced chemotaxis of progenitors. Ann N Y Acad Sci. 1999 Apr 30;872: 142-62; discussion 163.

Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science. 1998 Jan 16;279(5349): 381-4.

Carr MW, Roth SJ, Luther E, Rose SS, Springer TA. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9): 3652-6.

Castan L, Magnan A, Bouchaud G. Chemokine receptors in allergic diseases. Allergy. 2017 May;72(5): 682-90.

Cecchinato V, D'Agostino G, Raeli L, Uguccioni M. Chemokine interaction with synergy-inducing molecules: fine tuning modulation of cell trafficking. J Leukoc Biol. 2016 Jun;99(6): 851-5.

Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol. 2018 Apr;15(4): 324-34.

Chen YL, Huang KF, Kuo WC, Lo YC, Lee YM, Wang AH. Inhibition of glutaminyl cyclase attenuates cell migration modulated by monocyte chemoattractant proteins. Biochem J. 2012 Mar 1;442(2): 403-12.

Cheng W, Chen G. Chemokines and chemokine receptors in multiple sclerosis. Mediators Inflamm. 2014;2014: 659206.

Cupedo T, Vondenhoff MF, Heeregrave EJ, De Weerd AE, Jansen W, Jackson DG, Kraal G, Mebius RE. Presumptive lymph node organizers are differentially represented in developing mesenteric and peripheral nodes. J Immunol. 2004 Sep 1;173(5): 2968-75.

Cynis H, Hoffmann T, Friedrich D, Kehlen A, Gans K, Kleinschmidt M, Rahfeld JU, Wolf R, Wermann M, Stephan A, Haegele M, Sedlmeier R, Graubner S, Jagla W, Müller A, Eichentopf R, Heiser U, Seifert F, Quax PH, de Vries MR, Hesse I, Trautwein D, Wollert U, Berg S, Freyse EJ, Schilling S, Demuth HU. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol Med. 2011 Sep;3(9): 545-58.

Cynis H, Kehlen A, Haegele M, Hoffmann T, Heiser U, Fujii M, Shibazaki Y, Yoneyama H, Schilling S, Demuth HU. Inhibition of Glutaminyl Cyclases alleviates CCL2-mediated inflammation of non-alcoholic fatty liver disease in mice. Int J Exp Pathol. 2013 Jun;94(3): 217-25.

Cynis H, Rahfeld JU, Stephan A, Kehlen A, Koch B, Wermann M, Demuth HU, Schilling S. Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. J Mol Biol. 2008 Jun 20;379(5): 966-80.

de Zeeuw D, Bekker P, Henkel E, Hasslacher C, Gouni-Berthold I, Mehling H, Potarca A, Tesar V, Heerspink HJ, Schall TJ; CCX140-B Diabetic Nephropathy Study Group. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 2015 Sep;3(9): 687-96.

DiPersio JF, Uy GL, Yasothan U, Kirkpatrick P. Plerixafor. Nat Rev Drug Discov. 2009 Feb;8(2): 105-6.

Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, Patel MR, Chaves J, Park H, Mita AC, Hamilton EP, Annunziata CM, Grote HJ, von Heydebreck A, Grewal J, Chand V, Gulley JL. Efficacy and Safety of Avelumab for Patients With Recurrent or Refractory Ovarian Cancer: Phase 1b Results From the JAVELIN Solid Tumor Trial. JAMA Oncol. 2019 Mar 1;5(3): 393-401.

Eardley KS, Zehnder D, Quinkler M, Lepenies J, Bates RL, Savage CO, Howie AJ, Adu D, Cockwell P. The relationship between albuminuria, MCP-1/CCL2, and interstitial macrophages in chronic kidney disease. Kidney Int. 2006 Apr;69(7): 1189-97.

Ebisuno Y, Tanaka T, Kanemitsu N, Kanda H, Yamaguchi K, Kaisho T, Akira S, Miyasaka M. Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J Immunol. 2003 Aug 15;171(4): 1642-6.

Gao J, Liu X, Wei L, Niu D, Wei J, Wang L, Ge H, Wang M, Yu Q, Jin T, Tian T, Dai Z, Fu R. Genetic variants of MCP-1 and CCR2 genes and IgA nephropathy risk. Oncotarget. 2016 Nov 22;7(47): 77950-57.

Giunti S, Barutta F, Perin PC, Gruden G. Targeting the MCP-1/CCR2 System in diabetic kidney disease. Curr Vasc Pharmacol. 2010 Nov;8(6): 849-60.

Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu Rev Immunol. 2014;32: 659-702.

Gschwandtner M, Derler R, Midwood KS. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front Immunol. 2019 Dec 13;10: 2759.

Gunn MD, Ngo VN, Ansel KM, Ekland EH, Cyster JG, Williams LT. A B-cell- homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature. 1998 Feb 19;391(6669): 799-803.

Haller H, Bertram A, Nadrowitz F, Menne J. Monocyte chemoattractant protein-1 and the kidney. Curr Opin Nephrol Hypertens. 2016 Jan;25(1): 42-9.

Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9): 3360- 5.

Hellvard A, Maresz K, Schilling S, Graubner S, Heiser U, Jonsson R, Cynis H, Demuth HU, Potempa J, Mydel P. Glutaminyl cyclases as novel targets for the treatment of septic arthritis. J Infect Dis. 2013 Mar 1;207(5): 768-77.

Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol. 2012 Jun;27(6): 901-9.

Huang Y, Caputo CR, Noordmans GA, Yazdani S, Monteiro LH, van den Born J, van Goor H, Heeringa P, Korstanje R, Hillebrands JL. Identification of novel genes associated with renal tertiary lymphoid organ formation in aging mice. PLoS One. 2014 Mar 17;9(3): e91850.

Hussain M, Adah D, Tariq M, Lu Y, Zhang J, Liu J. CXCL13/CXCR5 signaling axis in cancer. Life Sci. 2019 Jun 15;227: 175-86.

Iizuka T, Tanaka T, Suematsu M, Miura S, Watanabe T, Koike R, Ishimura Y, Ishii H, Miyasaka N, Miyasaka M. Stage-specific expression of mucosal addressin cell adhesion molecule-1 during embryogenesis in rats. J Immunol. 2000 Mar 1;164(5): 2463-71.

Kasamon YL, Chen H, de Claro RA, Nie L, Ye J, Blumenthal GM, Farrell AT, Pazdur R. FDA Approval Summary: Mogamulizumab-kpkc for Mycosis Fungoides and Sézary Syndrome. Clin Cancer Res. 2019 Dec 15;25(24): 7275-80.

Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 2003 Aug;4(8): 741-8.

Katagiri K, Ohnishi N, Kabashima K, Iyoda T, Takeda N, Shinkai Y, Inaba K, Kinashi T. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol. 2004 Oct;5(10): 1045- 51.

Kang YS, Lee MH, Song HK, Ko GJ, Kwon OS, Lim TK, Kim SH, Han SY, Han KH, Lee JE, Han JY, Kim HK, Cha DR. CCR2 antagonism improves insulin resistance, lipid metabolism, and diabetic nephropathy in type 2 diabetic mice. Kidney Int. 2010 Nov;78(9): 883-94.

Kim YH, Bagot M, Pinter-Brown L, Rook AH, Porcu P, Horwitz SM, Whittaker S, Tokura Y, Vermeer M, Zinzani PL, Sokol L, Morris S, Kim EJ, Ortiz-Romero PL, Eradat H, Scarisbrick J, Tsianakas A, Elmets C, Dalle S, Fisher DC, Halwani A, Poligone B, Greer J, Fierro MT, Khot A, Moskowitz AJ, Musiek A, Shustov A, Pro B, Geskin LJ, Dwyer K, Moriya J, Leoni M, Humphrey JS, Hudgens S, Grebennik DO, Tobinai K, Duvic M; MAVORIC Investigators. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018 Sep;19(9): 1192-204.

Kitagawa K, Wada T, Furuichi K, Hashimoto H, Ishiwata Y, Asano M, Takeya M, Kuziel WA, Matsushima K, Mukaida N, Yokoyama H. Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Pathol. 2004 Jul;165(1): 237- 46.

Koch AE, Polverini PJ, Kunkel SL, Harlow LA, DiPietro LA, Elner VM, Elner SG, Strieter RM. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992 Dec 11;258(5089): 1798-801.

Lambers Heerspink HJ, de Zeeuw D. Novel drugs and intervention strategies for the treatment of chronic kidney disease. Br J Clin Pharmacol. 2013 Oct;76(4): 536-50.

Le Y, Zhou Y, Iribarren P, Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. Cell Mol Immunol. 2004 Apr;1(2): 95-104.

Ley K. Arrest chemokines. Microcirculation. 2003 Jun;10(3-4): 289-95.

Ling MF, Luster AD. Novel approach to inhibiting chemokine function. EMBO Mol Med. 2011 Sep;3(9): 510-2.

Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TN, Salant DJ, Gutierrez- Ramos JC. RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J Exp Med. 1997 Apr 7;185(7): 1371-80.

López-Novoa JM, Martínez-Salgado C, Rodríguez-Peña AB, López-Hernández FJ. Common pathophysiological mechanisms of chronic kidney disease: therapeutic perspectives. Pharmacol Ther. 2010 Oct;128(1): 61-81.

Luzentales-Simpson M, Pang YCF, Zhang A, Sousa JA, Sly LM. Vedolizumab: Potential Mechanisms of Action for Reducing Pathological Inflammation in Inflammatory Bowel Diseases. Front Cell Dev Biol. 2021 Feb 3;9: 612830.

Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16): 9448-53.

Macconi D. Targeting the renin angiotensin system for remission/regression of chronic kidney disease. Histol Histopathol. 2010 May;25(5): 655-68.

McLeod SJ, Li AH, Lee RL, Burgess AE, Gold MR. The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J Immunol. 2002 Aug 1;169(3): 1365-71.

Menne J, Eulberg D, Beyer D, Baumann M, Saudek F, Valkusz Z, Więcek A, Haller H; Emapticap Study Group. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol Dial Transplant. 2017 Feb 1;32(2): 307-315.

Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol. 2020 Jan;16(1): 11-30.

Miyake K, Weissman IL, Greenberger JS, Kincade PW. Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J Exp Med. 1991 Mar 1;173(3): 599- 607.

Miyasaka M, Tanaka T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol. 2004 May;4(5): 360-70.

Moadab F, Khorramdelazad H, Abbasifard M. Role of CCL2/CCR2 axis in the immunopathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches. Life Sci. 2021 Mar 15;269: 119034.

Moore JP, Kuritzkes DR. A pièce de resistance: how HIV-1 escapes small molecule CCR5 inhibitors. Curr Opin HIV AIDS. 2009 Mar;4(2): 118-24.

Moreno JA, Gomez-Guerrero C, Mas S, Sanz AB, Lorenzo O, Ruiz-Ortega M, Opazo L, Mezzano S, Egido J. Targeting inflammation in diabetic nephropathy: a tale of hope. Expert Opin Investig Drugs. 2018 Nov;27(11): 917-30.

Morgan P, Van Der Graaf PH, Arrowsmith J, Feltner DE, Drummond KS, Wegner CD, Street SD. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today. 2012 May;17(9-10): 419-24.

Moser B, Ebert L. Lymphocyte traffic control by chemokines: follicular B helper T cells. Immunol Lett. 2003 Jan 22;85(2): 105-12.

Mukasa R, Satoh A, Tominaga Y, Yamazaki M, Matsumoto K, Iigo Y, Higashida T, Kita Y, Miyasaka M, Takashi T. Development of a cell-free binding assay for rat ICAM-1/LFA-1 interactions using a novel anti-rat LFA-1 monoclonal antibody and comparison with a cell-based assay. J Immunol Methods. 1999 Aug 31;228(1-2): 69-79.

Murphy PM. Chemokines and the molecular basis of cancer metastasis. N Engl J Med. 2001 Sep 13;345(11): 833-5.

Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017 Sep;17(9): 559-72.

Nakano H, Gunn MD. Gene duplications at the chemokine locus on mouse chromosome 4: multiple strain-specific haplotypes and the deletion of secondary lymphoid-organ chemokine and EBI-1 ligand chemokine genes in the plt mutation. J Immunol. 2001 Jan 1;166(1): 361-9.

Natori Y, Sekiguchi M, Ou Z, Natori Y. Gene expression of CC chemokines in experimental crescentic glomerulonephritis (CGN). Clin Exp Immunol. 1997 Jul;109(1): 143-8.

Necula D, Riviere-Cazaux C, Shen Y, Zhou M. Insight into the roles of CCR5 in learning and memory in normal and disordered states. Brain Behav Immun. 2021 Feb;92: 1-9.

Nishimura T, Itoh T. Higher level expression of lymphocyte function-associated antigen-1 (LFA-1) on in vivo natural killer cells. Eur J Immunol. 1988 Dec;18(12): 2077-80.

Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 1997 May 5;407(3): 313-9.

Okada T, Ngo VN, Ekland EH, Förster R, Lipp M, Littman DR, Cyster JG. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med. 2002 Jul 1;196(1): 65-75.

Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M, Littman DR, Rollins BJ, Zweerink H, Rot A, von Andrian UH. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001 Nov 5;194(9): 1361-73.

Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz- Ortega M, Ortiz A, Fernandez-Fernandez B. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs. 2016 Sep;25(9): 1045-58.

Reedquist KA, Bos JL. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J Biol Chem. 1998 Feb 27;273(9): 4944-9.

Rot A, von Andrian UH. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol. 2004;22: 891- 928.

Sayyed SG, Ryu M, Kulkarni OP, Schmid H, Lichtnekert J, Grüner S, Green L, Mattei P, Hartmann G, Anders HJ. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int. 2011 Jul;80(1): 68-78.

Schaerli P, Willimann K, Lang AB, Lipp M, Loetscher P, Moser B. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000 Dec 4;192(11): 1553-62.

Schulz O, Hammerschmidt SI, Moschovakis GL, Förster R. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol. 2016 May 20;34: 203-42.

Shamri R, Grabovsky V, Feigelson SW, Dwir O, Van Kooyk Y, Alon R. Chemokine stimulation of lymphocyte alpha 4 integrin avidity but not of leukocyte function-associated antigen-1 avidity to endothelial ligands under shear flow requires cholesterol membrane rafts. J Biol Chem. 2002 Oct 18;277(42): 40027-35.

Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O, Kinashi T. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J Cell Biol. 2003 Apr 28;161(2): 417-27.

Siddiqui K, Joy SS, Al-Rubeaan K. Association of urinary monocyte chemoattractant protein-1 (MCP-1) and kidney injury molecule-1 (KIM-1) with risk factors of diabetic kidney disease in type 2 diabetes patients. Int Urol Nephrol. 2019 Aug;51(8): 1379-86.

Solari R, Pease JE, Begg M. "Chemokine receptors as therapeutic targets: Why aren't there more drugs?". Eur J Pharmacol. 2015 Jan 5;746: 363-7.

Stasikowska O, Wagrowska-Danilewicz M. Chemokines and chemokine receptors in glomerulonephritis and renal allograft rejection. Med Sci Monit. 2007 Feb;13(2): RA31-6.

Stein JV, Rot A, Luo Y, Narasimhaswamy M, Nakano H, Gunn MD, Matsuzawa A, Quackenbush EJ, Dorf ME, von Andrian UH. The CC chemokine thymus- derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med. 2000 Jan 3;191(1): 61-76.

Steinberg M, Silva M. Plerixafor: A chemokine receptor-4 antagonist for mobilization of hematopoietic stem cells for transplantation after high-dose chemotherapy for non-Hodgkin's lymphoma or multiple myeloma. Clin Ther. 2010 May;32(5): 821-43.

Stellbrink HJ, Le Fevre E, Carr A, Saag MS, Mukwaya G, Nozza S, Valluri SR, Vourvahis M, Rinehart AR, McFadyen L, Fichtenbaum C, Clark A, Craig C, Fang AF, Heera J. Once-daily maraviroc versus tenofovir/emtricitabine each combined with darunavir/ritonavir for initial HIV-1 treatment. AIDS. 2016 May 15;30(8): 1229-38.

Streeter PR, Berg EL, Rouse BT, Bargatze RF, Butcher EC. A tissue-specific endothelial cell molecule involved in lymphocyte homing. Nature. 1988 Jan 7;331(6151): 41-6.

Strieter RM, Kunkel SL, Elner VM, Martonyi CL, Koch AE, Polverini PJ, Elner SG. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol. 1992 Dec;141(6): 1279-84.

Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, Kitamura Y, Matsushima K, Yoshida N, Nishikawa S, Kishimoto T, Nagasawa T. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998 Jun 11;393(6685): 591-4.

Tamatani T, Miyasaka M. Identification of monoclonal antibodies reactive with the rat homolog of ICAM-1, and evidence for a differential involvement of ICAM- 1 in the adherence of resting versus activated lymphocytes to high endothelial cells. Int Immunol. 1990;2(2): 165-71.

Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol. 2014 Apr;10(4): 226-37.

Taniguchi H, Kojima R, Sade H, Furuya M, Inomata N, Ito M. Involvement of MCP-1 in tubulointerstitial fibrosis through massive proteinuria in anti-GBM nephritis induced in WKY rats. J Clin Immunol. 2007 Jul;27(4): 409-29.

Tang WW, Qi M, Warren JS. Monocyte chemoattractant protein 1 mediates glomerular macrophage infiltration in anti-GBM Ab GN. Kidney Int. 1996 Aug;50(2): 665-71.

Tesch GH, Schwarting A, Kinoshita K, Lan HY, Rollins BJ, Kelley VR. Monocyte chemoattractant protein-1 promotes macrophage-mediated tubular injury, but not glomerular injury, in nephrotoxic serum nephritis. J Clin Invest. 1999 Jan;103(1): 73-80.

Verhave JC, Bouchard J, Goupil R, Pichette V, Brachemi S, Madore F, Troyanov S. Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study. Diabetes Res Clin Pract. 2013 Sep;101(3): 333-40.

Viedt C, Dechend R, Fei J, Hänsch GM, Kreuzer J, Orth SR. MCP-1 induces inflammatory activation of human tubular epithelial cells: involvement of the transcription factors, nuclear factor-kappaB and activating protein-1. J Am Soc Nephrol. 2002 Jun;13(6): 1534-47.

Wada T, Yokoyama H, Furuichi K, Kobayashi KI, Harada K, Naruto M, Su SB, Akiyama M, Mukaida N, Matsushima K. Intervention of crescentic glomerulonephritis by antibodies to monocyte chemotactic and activating factor (MCAF/MCP-1). FASEB J. 1996 Oct;10(12): 1418-25.

Wada T, Furuichi K, Sakai N, Iwata Y, Yoshimoto K, Shimizu M, Takeda SI, Takasawa K, Yoshimura M, Kida H, Kobayashi KI, Mukaida N, Naito T, Matsushima K, Yokoyama H. Up-regulation of monocyte chemoattractant protein-1 in tubulointerstitial lesions of human diabetic nephropathy. Kidney Int. 2000 Oct;58(4): 1492-9.

Wang JM, Deng X, Gong W, Su S. Chemokines and their role in tumor growth and metastasis. J Immunol Methods. 1998 Nov 1;220(1-2): 1-17.

Warnock RA, Campbell JJ, Dorf ME, Matsuzawa A, McEvoy LM, Butcher EC. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer's patch high endothelial venules. J Exp Med. 2000 Jan 3;191(1): 77-88.

Xu LL, Warren MK, Rose WL, Gong W, Wang JM. Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J Leukoc Biol. 1996 Sep;60(3): 365-71.

Yang M, Lu J, Zhang G, Wang Y, He M, Xu Q, Xu C, Liu H. CXCL13 shapes immunoactive tumor microenvironment and enhances the efficacy of PD-1 checkpoint blockade in high-grade serous ovarian cancer. J Immunother Cancer. 2021 Jan;9(1): e001136.

Yonemoto S, Machiguchi T, Nomura K, Minakata T, Nanno M, Yoshida H. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus. Clin Exp Nephrol. 2006 Sep;10(3): 186-92.

Yusuf-Makagiansar H, Anderson ME, Yakovleva TV, Murray JS, Siahaan TJ. Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases. Med Res Rev. 2002 Mar;22(2): 146-67.

Zhang Y, Fujita N, Oh-hara T, Morinaga Y, Nakagawa T, Yamada M, Tsuruo T. Production of interleukin-11 in bone-derived endothelial cells and its role in the formation of osteolytic bone metastasis. Oncogene. 1998 Feb 12;16(6): 693-703.

Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998 Jun 11;393(6685): 595-9.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る