リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spin Transition of Iron in δ‐(Al,Fe)OOH Induces Thermal Anomalies in Earth's Lower Mantle」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spin Transition of Iron in δ‐(Al,Fe)OOH Induces Thermal Anomalies in Earth's Lower Mantle

Wen Pin Hsieh Takayuki Ishii Keng Hsien Chao Jun Tsuchiya Frédéric Deschamps Eiji Ohtani 東北大学 DOI:10.1029/2020GL087036

2020.02.05

概要

Seismic anomalies observed in Earth's deep mantle are conventionally considered to be associated with thermal and compositional anomalies, and possibly partial melt of major lower‐mantle phases. However, through deep water cycle, impacts of hydrous minerals on geophysical observables and on the deep mantle thermal state and geodynamics remain poorly understood. Here we precisely measured thermal conductivity of δ‐(Al,Fe)OOH, an important water‐carrying mineral in Earth's deep interior, to lowermost mantle pressures at room temperature. The thermal conductivity varies drastically by twofold to threefold across the spin transition of iron, resulting in an exceptionally low thermal conductivity at the lowermost mantle conditions. As δ‐(Al,Fe)OOH is transported to the lowermost mantle, its exceptionally low thermal conductivity may serve as a local thermal insulator, promoting high‐temperature anomalies and the formation of partial melt and thermal plumes at the base of the mantle, strongly infiuencing thermo‐chemical profiles in the region and fate of Earth's deep water cycle.

この論文で使われている画像

参考文献

Akahama, Y., & Kawamura, H. (2004). High‐pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure determi- nation in the multimegabar pressure range. Journal of Applied Physics, 96(7), 3748–3751. https://doi.org/10.1063/1.1778482

Andrault, D., Pesce, G., Bouhifd, M. A., Bolfan‐Casanova, N., Henot, J.‐M., & Mezouar, M. (2014). Melting of subducted basalt at the core‐ mantle boundary. Science, 344(6186), 892–895. https://doi.org/10.1126/science.1250466

Baroni, S., de Gironcoli, S., Corso, A. D., & Giannozzi, P. (2001). Phonons and related crystal properties from density‐functional pertur- bation theory. Reviews of Modern Physics, 134, 114305. https://doi.org/10.1063/1.3563634

Blöchl, P. (1994). Projecto augmented‐wave method. Physical Review B, 50, 17953. https://doi.org/10.1142/9789814365031_0023

Cahill, D. G. (2004). Analysis of heat fiow in layered structures for time‐domain thermorefiectance. The Review of Scientific Instruments, 75(12), 5119–5122. https://doi.org/10.1063/1.1819431

Chang, Y.‐Y., Hsieh, W.‐P., Tan, E., & Chen, J. (2017). Hydration‐reduced lattice thermal conductivity of olivine in Earth's upper mantle. Proceedings of the National Academy of Sciences, 114(16), 4078–4081. https://doi.org/10.1073/pnas.1616216114

Chao, K.‐H., & Hsieh, W.‐P. (2019). Thermal conductivity anomaly in (Fe0.78 Mg0.22)CO3 siderite across spin transition of iron. Journal of Geophysical Research: Solid Earth, 124, 1388–1396. https://doi.org/10.1029/2018jb017003

Chen, B., Hsieh, W.‐P., Cahill, D. G., Trinkle, D. R., & Li, J. (2011). Thermal conductivity of compressed H2O to 22 GPa: A test of the Leibfried‐Schlömann equation. Physical Review B, 83(13), 132301. https://doi.org/10.1103/PhysRevB.83.132301

Cortona, P. (2017). Hydrogen bond symmetrization and elastic constants under pressure of δ‐AlOOH. Journal of Physics. Condensed Matter, 29, 325505. https://doi.org/10.1088/1361‐648X/aa791f

Dalton, D. A., Hsieh, W.‐P., Hohensee, G. T., Cahill, D. G., & Goncharov, A. F. (2013). Effect of mass disorder on the lattice thermal con- ductivity of MgO periclase under pressure. Scientific Reports, 3, 2400. https://doi.org/10.1038/srep02400

Deschamps, F., Cobden, L., & Tackley, P. J. (2012). The primitive nature of large low shear‐wave velocity provinces. Earth and Planetary Science Letters, 349–350, 198–208. https://doi.org/10.1016/j.epsl.2012.07.012

Deschamps, F., & Hsieh, W.‐P. (2019). Lowermost mantle thermal conductivity constrained from experimental data and tomographic models. Geophysical Journal International, 219, S115–S136. https://doi.org/10.1093/gji/ggz231

Deschamps, F., & Li, Y. (2019). Core‐mantle boundary dynamic topography: Infiuence of post‐perovskite viscosity. Journal of Geophysical Research: Solid Earth, 124, 9247–9264. https://doi.org/10.1029/2019JB017859

Dobson, D. P., & Brodholt, J. P. (2005). Subducted banded iron formations as a source of ultralow‐velocity zones at the core‐mantle boundary. Nature, 434(7031), 371–374. https://doi.org/10.1038/nature03430

Duan, Y., Sun, N., Wang, S., Li, X., Guo, X., Ni, H., et al. (2018). Phase stability and thermal equation of state of δ‐AlOOH: Implication for water transportation to the deep lower mantle. Earth and Planetary Science Letters, 494, 92–98. https://doi.org/10.1016/j.epsl.2018.05.003

Fukao, Y., Widiyantoro, S., & Obayashi, M. (2001). Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics, 39(3), 291–323. https://doi.org/10.1029/1999RG000068

Fukui, H., Tsuchiya, T., & Baron, A. Q. R. (2012). Lattice dynamics calculations for ferropericlase with internally consistent LDA + U method. Journal of Geophysical Research, 117, B12202. https://doi.org/10.1029/2012JB009591

Garnero, E. J., & Mcnamara, A. K. (2008). Structure and dynamics of Earth's lower mantle. Science, 320(5876), 626–628. https://doi.org/ 10.1126/science.1148028

Ge, Z., Cahill, D., & Braun, P. (2006). Thermal conductance of hydrophilic and hydrophobic interfaces. Physical Review Letters, 96, 186101. https://doi.org/10.1103/PhysRevLett.96.186101

Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., et al. (2009). QUANTUM ESPRESSO: A modular and open‐ source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21, 395502. https://doi.org/10.1088/ 0953‐8984/21/39/395502

Hirschmann, M., & Kohlstedt, D. (2012). Water in Earth's mantle. Physics Today, 65(3), 40–45. https://doi.org/10.1063/pt.3.1476

Hsieh, W.‐P. (2015). Thermal conductivity of methanol‐ethanol mixture and silicone oil at high pressures. Journal of Applied Physics, 117, 235901. https://doi.org/10.1063/1.4922632

Hsieh, W.‐P., Chen, B., Li, J., Keblinski, P., & Cahill, D. G. (2009). Pressure tuning of the thermal conductivity of the layered muscovite crystal. Physical Review B, 80, 180302. https://doi.org/10.1103/PhysRevB.80.180302

Hsieh, W.‐P., Deschamps, F., Okuchi, T., & Lin, J.‐F. (2017). Reduced lattice thermal conductivity of Fe‐bearing bridgmanite in Earth's deep mantle. Journal of Geophysical Research: Solid Earth, 122, 4900–4917. https://doi.org/10.1002/2017JB014339

Hsieh, W.‐P., Deschamps, F., Okuchi, T., & Lin, J.‐F. (2018). Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics. Proceedings of the National Academy of Sciences of the United States of America, 115(16), 4099–4104. https://doi.org/10.1073/pnas.1718557115

Jacobsen, S. D. (2006). Effect of water on the equation of state of nominally anhydrous minerals. Reviews in Mineralogy and Geochemistry, 62, 321–342. https://doi.org/10.2138/rmg.2006.62.14

Kang, D., Feng, Y. X., Yuan, Y., Ye, Q. J., Zhu, F., Huo, H. Y., et al. (2017). Hydrogen‐bond symmetrization of δ‐AlOOH. Chinese Physics Letters, 34, 108301. https://doi.org/10.1088/0256‐307X/34/10/108301

Kawazoe, T., Ohira, I., Ishii, T., Boffa Ballaran, T., McCammon, C., Suzuki, A., & Ohtani, E. (2017). Single crystal synthesis of δ‐(Al,Fe) OOH. American Mineralogist, 102(9), 1953–1956. https://doi.org/10.2138/am‐2017‐6153

Klemens, P. G., White, G. K., & Tainsh, R. J. (1962). Scattering of lattice waves by point defects. Philosophical Magazine, 7(80), 1323–1335. https://doi.org/10.1080/14786436208213166

Kuribayashi, T., Sano‐Furukawa, A., & Nagase, T. (2014). Observation of pressure‐induced phase transition of δ‐AlOOH by using single‐ crystal synchrotron X‐ray diffraction method. Physics and Chemistry of Minerals, 41(4), 303–312. https://doi.org/10.1007/s00269‐013‐ 0649‐6

Li, M., McNamara, A. K., & Garnero, E. J. (2014). Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nature Geoscience, 7(5), 366–370. https://doi.org/10.1038/ngeo2120

Li, M., McNamara, A. K., Garnero, E. J., & Yu, S. (2017). Compositionally‐distinct ultra‐low velocity zones on Earth's core‐mantle boundary. Nature Communications, 8, 177. https://doi.org/10.1038/s41467‐017‐00219‐x

Lin, J. F., Speziale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244–275. https://doi.org/10.1002/rog.20010

Liu, J., Hu, Q., Young Kim, D., Wu, Z., Wang, W., Xiao, Y., et al. (2017). Hydrogen‐bearing iron peroxide and the origin of ultralow‐velocity zones. Nature, 551(7681), 494–497. https://doi.org/10.1038/nature24461

Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. https://doi.org/10.1029/JB091iB05p04673

Mashino, I., Murakami, M., & Ohtani, E. (2016). Sound velocities of δ‐AlOOH up to core‐mantle boundary pressures with implications for the seismic anomalies in the deep mantle. Journal of Geophysical Research: Solid Earth, 121, 595–609. https://doi.org/10.1002/ 2015JB012477

McNamara, A. K., Garnero, E. J., & Rost, S. (2010). Tracking deep mantle reservoirs with ultra‐low velocity zones. Earth and Planetary Science Letters, 299(1–2), 1–9. https://doi.org/10.1016/j.epsl.2010.07.042

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillonin‐zone integrations. Physical Review B, 13(12), 5188–5192. https://doi.org/ 10.1103/PhysRevB.13.5188

Muir, J. M. R., & Brodholt, J. P. (2018). Water distribution in the lower mantle: Implications for hydrolytic weakening. Earth and Planetary Science Letters, 484, 363–369. https://doi.org/10.1016/j.epsl.2017.11.051

Nestola, F., & Smyth, J. R. (2016). Diamonds and water in the deep Earth: A new scenario. International Geology Review, 58(3), 263–276. https://doi.org/10.1080/00206814.2015.1056758

Nishi, M., Irifune, T., Tsuchiya, J., Tange, Y., Nishihara, Y., Fujino, K., & Higo, Y. (2014). Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nature Geoscience, 7(3), 224–227. https://doi.org/10.1038/ngeo2074

O'Hara, K. E., Hu, X., & Cahill, D. G. (2001). Characterization of nanostructured metal films by picosecond acoustics and interferometry. Journal of Applied Physics, 90(9), 4852–4858. https://doi.org/10.1063/1.1406543

Ohira, I., Jackson, J. M., Solomatova, N. V., Sturhahn, W., Finkelstein, G. J., Kamada, S., et al. (2019). Compressional behavior and spin state of δ‐(Al,Fe)OOH at high pressures. American Mineralogist, 104(9), 1273–1284. https://doi.org/10.2138/am‐2019‐6913

Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Hirao, N., Ohishi, Y., & Nishijima, M. (2014). Stability of a hydrous δ‐phase, AlOOH‐ MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 12–17. https://doi.org/10.1016/j.epsl.2014.05.059

Ohta, K., Yagi, T., Hirose, K., & Ohishi, Y. (2017). Thermal conductivity of ferropericlase in the Earth's lower mantle. Earth and Planetary Science Letters, 465, 29–37. https://doi.org/10.1016/j.epsl.2017.02.030

Ohta, K., Yagi, T., Taketoshi, N., Hirose, K., Komabayashi, T., Baba, T., et al. (2012). Lattice thermal conductivity of MgSiO3 perovskite and post‐perovskite at the core–mantle boundary. Earth and Planetary Science Letters, 349–350, 109–115. https://doi.org/10.1016/j. epsl.2012.06.043

Ohtani, E., Amaike, Y., Kamada, S., Sakamaki, T., & Hirao, N. (2014). Stability of hydrous phase H MgSiO2(OH)2 under the lower mantle conditions. Geophysical Research Letters, 41, 8283–8287. https://doi.org/10.1002/2014GL061690

Ohtani, E., Litasov, K., Suzuki, A., & Kondo, T. (2001). Stability field of new hydrous phase, for water transport into the deep mantle. Geophysical Research Letters, 28(20), 3991–3993. https://doi.org/10.1029/2001GL013397

Okuda, Y., Ohta, K., Sinmyo, R., Hirose, K., Yagi, T., & Ohishi, Y. (2019). Effect of spin transition of iron on the thermal conductivity of (Fe, Al)‐bearing bridgmanite. Earth and Planetary Science Letters, 520, 188–198. https://doi.org/10.1016/j.epsl.2019.05.042

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77(18), 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

Pillai, S. B., Jha, P. K., Padmalal, A., Maurya, D. M., & Chamyal, L. S. (2018). First principles study of hydrogen bond symmetrization in δ‐ AlOOH. Journal of Applied Physics, 123, 115901. https://doi.org/10.1063/1.5019586

Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., et al. (2008). Aluminous hydrous mineral δ‐AlOOH as a carrier of hydrogen into the core‐mantle boundary. Geophysical Research Letters, 35, L03303. https://doi.org/10.1029/2007GL031718

Sano‐Furukawa, A., Kagi, H., Nagai, T., Nakano, S., Fukura, S., Ushijima, D., et al. (2009). Change in compressibility of δ‐AlOOH and δ‐ AlOOD at high pressure: A study of isotope effect and hydrogen‐bond symmetrization. American Mineralogist, 94(8–9), 1255–1261. https://doi.org/10.2138/am.2009.3109

Sano‐Furukawa, A., Komatsu, K., Vanpeteghem, C. B., & Ohtani, E. (2008). Neutron diffraction study of δ‐AIOOD at high pressure and its implication for symmetrization of the hydrogen bond. American Mineralogist, 93(10), 1558–1567. https://doi.org/10.2138/am.2008.2849

Schmidt, A., Chiesa, M., Chen, X., & Chen, G. (2008). An optical pump‐probe technique for measuring the thermal conductivity of liquids. The Review of Scientific Instruments, 79, 064902. https://doi.org/10.1063/1.2937458

Shieh, S. R., Mao, H. K., Hemley, R. J., & Ming, L. C. (1998). Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth and Planetary Science Letters, 159(1–2), 13–23. https://doi.org/10.1016/S0012‐821X(98)00062‐4

Suzuki, A., Ohtani, E., & Kamada, T. (2000). A new hydrous phase δ‐Al00H synthesized at 21 GPa and 1000 °C. Physics and Chemistry of Minerals, 27(10), 689–693. https://doi.org/10.1007/s002690000120

Tsuchiya, J., & Tsuchiya, T. (2009). Elastic properties of δ‐AlOOH under pressure: First principles investigation. Physics of the Earth and Planetary Interiors, 174(1–4), 122–127. https://doi.org/10.1016/j.pepi.2009.01.008

Tsuchiya, J., & Tsuchiya, T. (2011). First‐principles prediction of a high‐pressure hydrous phase of AlOOH. Physical Review B: Condensed Matter and Materials Physics, 83, 054115. https://doi.org/10.1103/PhysRevB.83.054115

Tsuchiya, J., Tsuchiya, T., Tsuneyuki, S., & Yamanaka, T. (2002). First principles calculation of a high‐pressure hydrous phase, δ‐AlOOH. Geophysical Research Letters, 29(19), 1909. https://doi.org/10.1029/2002gl015417

Tsuchiya, J., Tsuchiya, T., & Wentzcovitch, R. M. (2005). Vibrational and thermodynamic properties of MgSiO3 postperovskite. Journal of Geophysical Research, 110, B02204. https://doi.org/10.1029/2004JB003409

Tsuchiya, J., Tsuchiya, T., & Wentzcovitch, R. M. (2008). Vibrational properties of δ‐AlOOH under pressure. American Mineralogist, 93(2–3), 477–482. https://doi.org/10.2138/am.2008.2627

VanKeken, P. E., Hacker, B. R., Syracuse, E. M., & Abers, G. A. (2011). Subduction factory: 4. Depth‐dependent fiux of H2O from sub- ducting slabs worldwide. Journal of Geophysical Research, 116, B01401. https://doi.org/10.1029/2010JB007922

Vanpeteghem, C. B., Ohtani, E., & Kondo, T. (2002). Equation of state of the hydrous phase δ‐AlOOH at room temperature up to 22.5 GPa. Geophysical Research Letters, 29(7), 22. https://doi.org/10.1029/2001GL014224

Wirth, R., Vollmer, C., Brenker, F., Matsyuk, S., & Kaminsky, F. (2007). Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina. Earth and Planetary Science Letters, 259, 384–399. https://doi.org/10.1016/j.epsl.2007.04.041

Xu, Y., Shankland, T. J., Linhardt, S., Rubie, D. C., Langenhorst, F., & Klasinski, K. (2004). Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors, 143, 321–336. https://doi.org/10.1016/j. pepi.2004.03.005

Yoshino, T., Baker, E., & Duffey, K. (2019). Fate of water in subducted hydrous sediments deduced from stability fields of FeOOH and AlOOH up to 20 GPa. Physics of the Earth and Planetary Interiors, 294, 106295. https://doi.org/10.1016/j.pepi.2019.106295

Yu, S., & Garnero, E. J. (2018). Ultralow velocity zone locations: A global assessment. Geochemistry, Geophysics, Geosystems, 19, 396–414. https://doi.org/10.1002/2017GC007281

Yuan, H., Zhang, L., Ohtani, E., Meng, Y., Greenberg, E., & Prakapenka, V. B. (2019). Stability of Fe‐bearing hydrous phases and element partitioning in the system MgO–Al2O3–Fe2O3–SiO2–H2O in Earth' s lowermost mantle. Earth and Planetary Science Letters, 524, 115714. https://doi.org/10.1016/j.epsl.2019.115714

Zhang, Y., Yoshino, T., Yoneda, A., & Osako, M. (2019). Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets. Earth and Planetary Science Letters, 519, 109–119. https://doi.org/10.1016/j.epsl.2019.04.048

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る