リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of multiple components of noble gas isotopes in backarc lithospheric mantle」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of multiple components of noble gas isotopes in backarc lithospheric mantle

横倉, 伶奈 北海道大学

2023.03.23

概要

Plate subduction is supposed that the only process for transporting H2O on surface of the
earth to mantle. Generally, it has been assumed that only hydrous minerals generated in
subducting slab could transport H2O to upper mantle and expelled H2O with P-T
condition change because pore-fluid (seawater) in subducted slab was supposed to be
expelled before subduction to a depth ~5 km due to compaction and porosity collapse
beneath the accretionary prism (Peacock, 1990; Jarrard, 2003). Based on halogen-noble
gases isotope compositions extracted from metamorphic rocks and xenoliths derived from
mantle, Sumino et al. (2010) and Kobayashi et al. (2017) reported that pore-fluid in slab
could be expelled at around 100 km depth. If such pore-fluids have survived in the deeper
part of mantle (>100 km) it has significant influences on the discussion of circulation of
H2O between the Earth's surface and mantle. To access the possibility that pore-fluid in a
subducted slab could achieve deep mantle, volcanic activity in eastern Asia during
Cenozoic era deserve attention. In this area H2O related to subducted slab has induced
inland volcanic activity (e.g., Zhao et al., 2004) In addition, Kuritani et al. (2011) and
Ichiki et al. ...

参考文献

Ackerman, L., Mahlen, N., JelÍnek, E., Medaris, G., Ulrych, J., Strnad, L., MihaljeviČ,

M., 2007. Geochemistry and Evolution of Subcontinental Lithospheric Mantle in

Central Europe: Evidence from Peridotite Xenoliths of the Kozákov Volcano,

Czech

Republic.

J.

Petrol.

48,

2235–2260.

https://doi.org/10.1093/petrology/egm058

Arakawa, M., Yamamoto, J., Kagi, H., 2007. Developing micro-Raman mass

spectrometry for measuring carbon isotopic composition of carbon dioxide. Appl.

Spectrosc. 61, 701–705. https://doi.org/10.1366/000370207781393244

Borghini, G., Fumagalli, P., Rampone, E., 2010. The stability of plagioclase in the upper

mantle: subsolidus experiments on fertile and depleted lherzolite. J. Petrol.

Burnard, P.G., Farley, K.A., Turner, G., 1998. Multiple fluid pulses in a Samoan

harzburgite. Chemical Geology. https://doi.org/10.1016/s0009-2541(97)00175-7

Burnard, P.G., Stuart, F.M., Turner, G., Oskarsson, N., 1994. Air contamination of basaltic

magmas: Implications for high3He/4He mantle Ar isotopic composition. J.

Geophys. Res. 99, 17709–17715. https://doi.org/10.1029/94jb01191

Chen, Y., Zhang, Y., Graham, D., Su, S., Deng, J., 2007. Geochemistry of Cenozoic

basalts and mantle xenoliths in Northeast China. Lithos 96, 108–126.

https://doi.org/10.1016/j.lithos.2006.09.015

Créon, L., Rouchon, V., Youssef, S., Rosenberg, E., Delpech, G., Szabó, C., Remusat, L.,

Mostefaoui, S., Asimow, P.D., Antoshechkina, P.M., Ghiorso, M.S., Boller, E.,

Guyot, F., 2017. Highly CO2-supersaturated melts in the Pannonian lithospheric

mantle

– A transient

carbon

reservoir?

Lithos

286–287,

519–533.

https://doi.org/10.1016/j.lithos.2016.12.009

Fan, Q.C., Sui, J.L., Liu, R.X., Wei, H.Q., Li, D.M., Sun, Q., Li, N., 2002. Periods of

Quarternary volcanic activity in Longgang area, Jilin province. Acta Petrol. Sin.

18, 495–500.

Fukao, Y., To, A., Obayashi, M., 2003. Whole mantle P wave tomography using P and

PP-P data. J. Geophys. Res. [Solid Earth] 108, ESE-8.

Fukao, Y., Widiyantoro, S., Obayashi, M., 2001. Stagnant slabs in the upper and lower

mantle transition region. Rev. Geophys. https://doi.org/10.1029/1999RG000068

Gautheron, C., Moreira, M., 2002. Helium signature of the subcontinental lithospheric

mantle. Earth and Planetary Science Letters. https://doi.org/10.1016/s001255

821x(02)00563-0

Graham, D.W., Humphris, S.E., Jenkins, W.J., Kurz, M.D., 1992a. Helium isotope

geochemistry of some volcanic rocks from Saint Helena. Earth Planet. Sci. Lett.

110, 121–131. https://doi.org/10.1016/0012-821x(92)90043-u

Graham, D.W., Jenkins, W.J., Schilling, J.-G., Thompson, G., Kurz, M.D., Humphris, S.E.,

1992b. Helium isotope geochemistry of mid-ocean ridge basalts from the South

Atlantic. Earth Planet. Sci. Lett. 110, 133–147. https://doi.org/10.1016/0012821x(92)90044-v

Hanyu, T., Yamamoto, J., Kimoto, K., Shimizu, K., Ushikubo, T., 2020. Determination of

total CO2 in melt inclusions with shrinkage bubbles. Chem. Geol. 557, 119855.

https://doi.org/10.1016/j.chemgeo.2020.119855

Hilton, D.R., Hammerschmidt, K., Loock, G., Friedrichsen, H., 1993. Helium and argon

isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of

crust/mantle interactions in a back-arc basin. Geochim. Cosmochim. Acta 57,

2819–2841. https://doi.org/10.1016/0016-7037(93)90392-A

Ichiki, M., Baba, K., Obayashi, M., Utada, H., 2006. Water content and geotherm in the

upper mantle above the stagnant slab: Interpretation of electrical conductivity and

seismic P-wave velocity models. Phys. Earth Planet. Inter. 155, 1–15.

https://doi.org/10.1016/j.pepi.2005.09.010

Ionov, D.A., Prikhod’ko, V.S., O’Reilly, S.Y., 1995. Peridotite xenoliths in alkali basalts

from the Sikhote-Alin, southeastern Siberia, Russia: trace-element signatures of

mantle beneath a convergent continental margin. Chem. Geol. 120, 275–294.

https://doi.org/10.1016/0009-2541(94)00142-u

Jarrard, R.D., 2003. Subduction fluxes of water, carbon dioxide, chlorine, and potassium.

Geochem. Geophys. Geosyst. 4. https://doi.org/10.1029/2002gc000392

Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Lock, J.B.,

Youn, J.S., Song, J., 2005. He-Ar and Nd-Sr isotopic compositions of ultramafic

xenoliths and host alkali basalts from the Korean peninsula. Geochem. J. 39, 341–

356. https://doi.org/10.2343/geochemj.39.341

Kobayashi, M., Sumino, H., Nagao, K., Ishimaru, S., Arai, S., Yoshikawa, M., Kawamoto,

T., Kumagai, Y., Kobayashi, T., Burgess, R., Ballentine, C.J., 2017. Slab-derived

halogens and noble gases illuminate closed system processes controlling volatile

element transport into the mantle wedge. Earth Planet. Sci. Lett. 457, 106–116.

56

https://doi.org/10.1016/j.epsl.2016.10.012

Kuritani, T., Ohtani, E., Kimura, J.-I., 2011. Intensive hydration of the mantle transition

zone beneath China caused by ancient slab stagnation. Nat. Geosci. 4, 713–716.

https://doi.org/10.1038/ngeo1250

Kurz, M.D., 1986. Cosmogenic helium in a terrestrial igneous rock. Nature 320, 435–439.

https://doi.org/10.1038/320435a0

Liu, D.Y., Nutman, A.P., Compston, W., Wu, J.S., Shen, Q.H., 1992. Remnants of ≥3800

Ma crust in the Chinese part of the Sino-Korean craton. Geology 20, 339–342.

https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

Liu, X., Zhao, D., Li, S., Wei, W., 2017. Age of the subducting Pacific slab beneath East

Asia and its geodynamic implications. Earth Planet. Sci. Lett. 464, 166–174.

https://doi.org/10.1016/j.epsl.2017.02.024

Matsuda, J., Matsumoto, T., Sumino, H., Nagao, K., Yamamoto, J., Miura, Y., Kaneoka,

I., Takahata, N., Sano, Y., 2002. The 3He/4He ratio of the new internal He

Standard of Japan (HESJ). Geochem. J. 36, 191–195.

Mibe, K., Yoshino, T., Ono, S., Yasuda, A., Fujii, T., 2003. Connectivity of aqueous fluid

in eclogite and its implications for fluid migration in the Earth’s interior. J.

Geophys. Res. 108. https://doi.org/10.1029/2002jb001960

O’Neill, H.S.C., 1981. The transition between spinel lherzolite and garnet lherzolite, and

its use as a Geobarometer. Contrib. Mineral. Petrol. 77, 185–194.

https://doi.org/10.1007/BF00636522

Ono, Mibe, Yoshino, 2002. Aqueous £uid connectivity in pyrope aggregates: water

transport into the deep mantle by a subducted oceanic crust without any hydrous

minerals. Earth Planet. Sci. Lett. 203, 895–903.

Ono, S., 1998. Stability limits of hydrous minerals in sediment and mid-ocean ridge basalt

compositions: Implications for water transport in subduction zones. J. Geophys.

Res. 103, 18253–18267. https://doi.org/10.1029/98jb01351

O’Reilly, S.Y., Chen, D., Griffin, W.L., Ryan, C.G., 1997. Minor elements in olivine from

spinel lherzolite xenoliths: implications for thermobarometry. Mineral. Mag. 61,

257–269. https://doi.org/10.1180/minmag.1997.061.405.09

Peacock, S.A., 1990. Fluid processes in subduction zones. Science 248, 329–337.

https://doi.org/10.1126/science.248.4953.329

Porcelli, D.R., Stone, J.O.H., O’Nions, R.K., 1987. Enhanced 3He4He ratios and

57

cosmogenic helium in ultramafic xenoliths. Chem. Geol. 64, 25–33.

https://doi.org/10.1016/0009-2541(87)90149-5

Roedder, E., 1984. Volume 12: fluid inclusions. Rev. Mineral. Geochem. 12.

Sano, Y., Tokutake, T., Takahata, N., 2008. Accurate measurement of atmospheric helium

isotopes. Anal. Sci. 24, 521–525. https://doi.org/10.2116/analsci.24.521

Staudacher, T., Allègre, C.J., 1988. Recycling of oceanic crust and sediments: the noble

gas

subduction

barrier.

Earth

Planet.

Sci.

Lett.

89,

173–183.

https://doi.org/10.1016/0012-821X(88)90170-7

Sterner, S.M., Pitzer, K.S., 1994. An equation of state for carbon dioxide valid from zero

to

extreme

pressures.

Contrib.

Mineral.

Petrol.

117,

362–374.

https://doi.org/10.1007/bf00307271

Sumino, H., Burgess, R., Mizukami, T., Wallis, S.R., Holland, G., Ballentine, C.J., 2010.

Seawater-derived noble gases and halogens preserved in exhumed mantle wedge

peridotite.

Earth

Planet.

Sci.

Lett.

294,

163–172.

https://doi.org/10.1016/j.epsl.2010.03.029

Tolstikhin, I.N., Mamyrin, B.A., Khabarin, L.B., Erlikh, E.N., 1974. Isotope composition

of helium in ultrabasic xenoliths from volcanic rocks of Kamchatka. Earth Planet.

Sci. Lett. 22, 75–84. https://doi.org/10.1016/0012-821X(74)90066-1

Turcotte, D.L., Paul, D., White, W.M., 2001. Thorium-uranium systematics require

layered mantle convection. J. Geophys. Res. [Solid Earth] 106, 4265–4276.

https://doi.org/10.1029/2000JB900409

Vance, D., Stone, J.O.H., O’Nions, R.K., 1989. He, Sr and Nd isotopes in xenoliths from

Hawaii and other oceanic islands. Earth Planet. Sci. Lett. 96, 147–160.

Wakita, H., Nagasawa, H., Uyeda, S., Kuno, H., 1967. Uranium, thorium and potassium

contents

of

possible

mantle

materials.

Geochem.

J.

1,

183–198.

https://doi.org/10.2343/geochemj.1.183

Wells, P.R.A., 1977. Pyroxene thermometry in simple and complex systems. Contrib.

Mineral. Petrol. 62, 129–139. https://doi.org/10.1007/bf00372872

Yamamoto, J., Kaneoka, I., Nakai, S., Kagi, H., Prikhod’ko, V.S., Arai, S., 2004. Evidence

for subduction-related components in the subcontinental mantle from low

3He/4He and 40Ar/36Ar ratio in mantle xenoliths from Far Eastern Russia. Chem.

Geol. 207, 237–259. https://doi.org/10.1016/j.chemgeo.2004.03.007

Yamamoto, J., Nakai, S., Nishimura, K., Kaneoka, I., Kagi, H., Sato, K., Okumura, T.,

58

Prikhod’ko, V.S., Arai, S., 2009. Intergranular trace elements in mantle xenoliths

from Russian Far East: Example for mantle metasomatism by hydrous melt.

Island Arc 18, 225–241. https://doi.org/10.1111/j.1440-1738.2008.00642.x

Yamamoto, J., Nishimura, K., Ishibashi, H., Kagi, H., Arai, S., Prikhod’ko, V.S., 2012.

Thermal structure beneath Far Eastern Russia inferred from geothermobarometric

analyses of mantle xenoliths: Direct evidence for high geothermal gradient in

backarc

lithosphere.

Tectonophysics

55,

4–557.

https://doi.org/10.1016/j.tecto.2012.06.005

Yokoyama, T., Nagai, Y., Hinohara, Y., Mori, T., 2017. Investigating the influence of nonspectral matrix effects in the determination of twenty-two trace elements in rock

samples

by

ICP-QMS.

Geostand.

Geoanal.

Res.

41,

221–242.

https://doi.org/10.1111/ggr.12147

Yu, F., Yuan, W., Han, S., Ma, Z., Jin, K., 2004. Chronological and Geochemical Features

and Degassing Evaluation of the Dayizishan Volcano, Jilin Province. ACTA

GEOSCIENTIA SINICA 219–223.

Zhang, B., Lei, J., Yuan, X., Zhang, G., He, J., Xu, Q., 2020. Detailed Moho variations

under Northeast China inferred from receiver function analyses and their tectonic

implications.

Phys.

Earth

Planet.

Inter.

300,

106448.

https://doi.org/10.1016/j.pepi.2020.106448

Zhang, H.-F., Goldstein, S.L., Zhou, X.-H., Sun, M., Zheng, J.-P., Cai, Y., 2008. Evolution

of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic

evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts.

Contrib. Mineral. Petrol. 155, 271–293. https://doi.org/10.1007/s00410-0070241-5

Zhao, D., Lei, J., Tang, R., 2004. Origin of the Changbai intraplate volcanism in Northeast

China: Evidence from seismic tomography. Chin. Sci. Bull. 49, 1401–1408.

https://doi.org/10.1360/04wd0125

59

Table 1-A Average core compositions (wt.%) of minerals of peridotite xenoliths in

northeastern China

Sample

Lg-1

Mineral

Olivine

Fo

Lg-2

Opx

Cpx

Spinel

0.90

Olivine

Lg-3

Opx

Cpx

Spinel

Olivine

0.89

Cr#

Opx

Cpx

Spinel

0.89

0.24

0.14

Al2O3

0.04

3.19

4.63

45.72

0.03

3.91

6.36

57.24

0.07

4.60

5.88

53.75

FeO

9.58

5.82

2.51

12.96

10.10

6.44

3.00

11.83

10.59

6.66

3.66

12.07

CaO

0.16

0.79

20.82

0.01

0.15

0.60

20.69

0.00

0.20

0.88

20.12

0.01

Na2O

0.02

0.11

1.05

0.01

0.03

0.11

1.31

0.01

0.02

0.12

0.88

0.01

MgO

48.25

32.48

16.03

19.63

47.70

31.98

14.76

21.05

48.17

32.23

16.72

20.69

Cr2O3

0.03

0.40

1.06

21.24

0.02

0.29

0.76

9.40

0.03

0.38

0.64

12.96

SiO2

41.77

57.01

53.59

0.08

41.79

56.41

52.56

0.09

40.75

54.85

51.57

0.13

ZnO

0.01

0.02

0.00

0.05

0.01

0.01

0.00

0.06

0.01

0.01

0.00

0.05

MnO

0.14

0.12

0.07

0.12

0.14

0.13

0.07

0.10

0.14

0.15

0.11

0.11

K2O

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.00

0.01

0.01

0.01

TiO2

0.01

0.06

0.24

0.16

0.01

0.10

0.47

0.21

0.02

0.11

0.41

0.21

Total

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

1100

±136

T (°C)

1022

±146

973

±109

Ol, Olivine; Opx, Orthopyroxene; Cpx, Clinopyroxene; Sp, Spinel

Fo and Cr# represent [Mg/ (Mg + Fe)] of olivine and [Cr/(Cr+Al)] of spinel, respectively.

60

Table 1-B Average core compositions (wt.%) of minerals of peridotite xenoliths in

northeastern China

Sample

Lg-4

Mineral

Olivine

Fo

Lg-5

Opx

Cpx

Spinel

0.90

Olivine

Opx

Cpx

Spinel

0.90

Cr#

0.13

0.27

Al2O3

0.07

4.80

5.49

54.96

0.02

2.95

4.53

42.91

FeO

9.96

6.20

3.42

11.64

9.65

6.23

2.69

13.63

CaO

0.21

1.19

20.16

0.01

0.09

0.67

22.02

0.01

Na2O

0.03

0.11

0.75

0.01

0.02

0.08

1.28

0.01

MgO

47.83

31.32

16.48

20.98

48.98

33.20

15.57

18.68

Cr2O3

0.04

0.38

0.59

11.93

0.02

0.43

1.13

24.25

SiO2

41.66

55.75

52.71

0.16

41.05

56.19

52.34

0.05

ZnO

0.03

0.01

0.00

0.04

0.01

0.00

0.00

0.07

MnO

0.14

0.13

0.06

0.09

0.14

0.15

0.08

0.14

K2O

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

TiO2

0.01

0.09

0.32

0.17

0.01

0.09

0.36

0.25

Total

100.00

100.00

100.00

100.00

100.00

100.00

100.00

100.00

1034

±115

834

±78

T (°C)

Ol, Olivine; Opx, Orthopyroxene; Cpx, Clinopyroxene; Sp, Spinel

Fo and Cr# represent [Mg/ (Mg + Fe)] of olivine and [Cr/(Cr+Al)] of spinel, respectively.

61

Table 2. Concentration of U and Th/U of olivine

U(ppb)

Lg-1

Lg-2

Lg-3

Lg-4

Lg-5

Th/U

Milli-Q only

1.59

4.28

HNO3 30 min

1.45

4.37

Milli-Q only

2.62

4.29

HNO3 30 min

1.51

4.78

Milli-Q only

3.10

3.01

HNO3 30 min

1.68

3.65

Milli-Q only

4.52

1.31

HNO3 30 min

1.27

4.56

Milli-Q only

1.14

1.79

HNO3 30 min

0.37

2.87

Comparison U concentration Th/U of olivine grains of each sample between washed with

70˚C 2N-HNO3 and washed with Milli-Q only.

62

Table 3. Densities of CO2 fluid inclusions of Lg-1 and Lg-3 measured by microRaman spectroscopy

Sample

Inclusion name

Lg-1

cpx-4-a

105.44

0.082

1.06

0.022

cpx-4-4G-1

105.54

0.023

1.09

0.006

cpx-4-b

105.50

0.009

1.08

0.002

cpx-4-c

105.51

0.006

1.08

0.001

opx-1-a

105.54

0.032

1.09

0.008

opx-1-b

105.49

0.042

1.08

0.011

cpx-5-a

105.40

0.027

1.05

0.007

1.08

0.012

Average

Lg-3

Density (g/ cm3)

delta

opx-1-b

105.77

0.019

1.14

0.004

opx-1-d

105.81

0.040

1.15

0.009

opx-2-b

105.71

0.024

1.13

0.005

opx-2-d

105.71

0.018

1.13

0.004

opx-2-e

105.70

0.004

1.13

0.001

1.14

0.011

Average

Delta of all inclusions were measured by Raman spectroscopy four times each. Delta

value is separation of wavenumber between two main peaks of Raman spectra of CO2.

“cpx” and “opx” represent of host mineral of inclusions. “cpx” and “opx” are

clinopyroxene and orthopyroxene, respectively. Deltas were corrected by the method

proposed by Hagiwara et al., (2021). CO2 density was calculated using a relationship

between Delta value and CO2 density (Yamamoto and Kagi, 2006).

63

Table 4. Noble gas isotopic ratios obtained by crushing method

Sample

Mineral

Weight(g)

He(10-9)

He'(10-9)

He'/4He (102)

40

Ar (10-9)

He/4He (Ra)

40

Ar/36Ar

He/40Ar*

Dalongwan Lake

Lg-1

Olivine

1.5806

41.18

1.16

0.471

2.48

6.45 ± 0.04

1509 ± 374

20.64

Lg-2

Olivine

1.5607

12.03

1.16

2.91

0.990

5.95 ± 0.04

1010 ± 394

17.11

Longquan Lake

Lg-3

Olivine

3.1035

21.85

1.37

1.90

34.12

3.97 ± 0.02

326 ± 20

Lg-4

Olivine

1.7432

8.56

1.37

5.40

6.40

3.74± 0.03

320 ± 31

Olivine

1.9814

1.34

0.150

0.102

1.29

0.14 ± 0.04

284 ± 44

Da Yi Shan

Lg-5

Unit for abundance is cc STP/g.

He’ was radiogenic addition generated after the time of eruption. 40Ar* was corrected

for air addition. - Not calculated

64

Table 5. Total area of each type of inclusion observed on the polished surface of

olivine grains and noble gas isotopic compositions

Sample

Total area of

Total area of

Total area of

He/4He

type (1) (µm2)

type (2) (µm2)

type (3) (µm2)

(Ra)

40

He (10-9)

36

40

40

ccSTP / g

ccSTP / g

ccSTP / g

Ar (10-9)

Ar/ Ar

Ar*(10-9)

Lg-1

111.29

291.84

615.86

6.45

1509

41.18

2.48

1.99

Lg-2

870.70

37.43

5.95

1010

12.03

0.99

0.7

Lg-3

18.96

729.76

41.96

3.97

326

21.85

34.12

Lg-4

190.31

3.74

320

8.56

6.4

Lg-5

130.55

0.14

284

1.34

1.29

40

Ar* was corrected for air addition. - Not calculated

65

Table 6. Estimated of relative coefficient of 4He and inherent 3He/4He (Ra) of three

type inclusion.

Relative coefficient of 4He

concentration

Inherent 3He/4He (Ra)

Type (1) inclusions

4.96

0.01

Type (2) inclusions

1.81

3.08

Type (3) inclusions

4.96

8.72

To obtain appropriate relative coefficients of gas concentration, we assumed two

conditions. First, relative coefficients of concentration of 4He of each type of inclusion is

limited between 0.01 to 100. Second condition is that we assumed that relative coefficient

of the concentration of 4He preserved in type (3) inclusion which have negative crystal

shape would be higher than other types of inclusions because higher-pressure CO2 are

often observed in negative crystal and 4He concentration is supposed to be proportional

to CO2 concentration. The coefficient of determination of relative coefficient of 4He

concentration and inherent 3He/4He are 0.905 and 0.413, respectively.

66

Table 7. Noble gases isotope ratios obtained by laser spot analysis

Type (2)

Type (3)

He/4He (Ra)

error

1.989

4.95

0.47

0.56

873

77.7

1-C-1

0.641

3.60

1.02

0.11

504

166.8

1-C-2

0.656

3.39

1.04

0.37

368

54.2

2A

1.515

4.89

0.32

0.84

374

39.2

Lg-2

I-1

0.533

2.97

0.75

0.71

297

37.2

Lg-3

A-1

0.742

0.93

0.93

0.20

332

102.0

1-B-2-2

0.350

1.45

1.09

0.30

395

69.9

1-6-D

0.296

0.65

1.47

0.26

274

64.6

Sample

grain name

Lg-1

A-1

He (10-10)

40

Ar (10-10)

40

Ar/36Ar

error

Lg-1

A-1

3.01

5.80

0.31

1.32

903

71.2

Lg-2

2-18-C

7.67

6.13

0.14

3.69

5169

351.2

2-18-C

2.78

5.90

0.22

1.55

2839

208.9

2-16-C-8

3.43

5.70

0.21

0.91

1972

167.8

2-A

1.12

4.58

0.66

1.18

2315

180.6

1-E(1)

0.21

3.81

2.11

0.27

8889 1636.1

1-E(2)

4.76

5.88

0.29

0.67

1344

112.8

1-E(3)

1.37

4.67

0.34

0.99

1393

129.2

4-1-B

12.49

6.18

0.18

1.30

2534

195.3

Lg-3

Unit for abundance is cc STP.

67

Figure.1

Longgang Area

DPRK and RK denote the Democratic People’s Republic of Korea and the Republic of

Korea, respectively.

68

Figure.2

Types of inclusions observed on the polished surfaces of olivine grains

69

Figure. 3

Comparison between 4He, 40Ar, and 40Ar* concentration of each sample obtained by

crushing method and total area of each type of inclusion on the polished olivine

surfaces of each sample

70

Figure.4

Noble gases isotope ratio obtained by crushing method and spot analysis of

inclusions of type (2) and type (3)

71

Figure.5

P–T diagram for the system CO2 from Pitzer and Sterner (1994)

Modified Fig.3 of Yamamoto et al. (2012)

Gray contours represent density in g/cm3 (i.e., isochors)

Black solid lines show modeled geotherms. Numbers labeling the lines denote the

corresponding heat flows in units of mW/m2, which are referred from Pollack and

Chapman (1977)

72

Figure.6

He/4He -3He/36Ar obtained by crushing method and spot analysis from each type of

inclusion

73

Figure.7

He/4He -40Ar/36Ar of mantle xenoliths sampled Far east Russia, Korea, China

Datum from Far east Russia, Korea, and China were obtained by crushing method.

74

Figure. 8a and 8b

Calculated radiogenic change of 3He/4He and 40Ar/36Ar of several components which

may be end-component

Yamamoto et al. (2020) also calculated the accumulated radiogenic nuclides based on the

nucleogenic/radiogenic 3He/4He ratio of 1 × 10−8 and calculated 3He/4He -40Ar/36Ar

using the same ratio in this study.

75

Figure. 9

He/4He -3He/36Ar mixing between pore-fluid and MORB

76

Figure. 10a and 10b

77

Appendix

Photograph of inclusions of type (2) and type (3)

78

79

80

81

82

83

84

85

86

87

88

89

90

91

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る