リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Altered functional connectivity associated with striatal dopamine depletion in Parkinson’s disease」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Altered functional connectivity associated with striatal dopamine depletion in Parkinson’s disease

Shima, Atsushi 京都大学 DOI:10.14989/doctor.r13570

2023.09.25

概要

Parkinson’s disease (PD) is neuropathologically characterized by
progressive loss of heterogeneous populations of neurons including neuromelanin laden dopamine neurons in the pars compacta
of the substantia nigra (Brissaud 1925). Within the pars compacta,
the degree of dopamine neuronal loss tends to be most prominent
in the ventrolateral tier, resulting in regional depletion of striatal
dopamine particularly in the posterior dorsal subdivisions of the
striatum. In vivo imaging studies have reported that the level of
dopamine depletion in the putamen correlates with the severity
of motor symptoms (Bernheimer et al. 1973; Seibyl et al. 1995;
Vingerhoets et al. 1997; Benamer et al. 2000; Wang et al. 2007).
However, the relationship between dopamine depletion and motor
symptoms in PD has not been fully clarified.
One of the earliest proposed models for this relationship is
the “firing rate model”, which is based on the observation of
tonic activity changes in basal ganglia neurons in l-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primate Parkinsonism. This model predicts that dopamine depletion in the striatum results in increased activity in the indirect pathway via
over-inhibition of the external globus pallidum (GPe), disinhibition of the subthalamic nucleus (STN), and decreased activity
in the direct pathway. ...

この論文で使われている画像

参考文献

Anderson JLR, Jenkinson M, Smith S. Non-linear registration, aka

spatial normalization. FMRIB. Analysis Group Technical Reports

TR07JA2, 2007:.

Baudrexel S, Witte T, Seifried C, von Wegner F, Beissner F, Klein JC,

Steinmetz H, Deichmann R, Roeper J, Hilker R. Resting state fMRI

reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. NeuroImage. 2011:55(4):1728–1738.

Bell PT, Gilat M, O’Callaghan C, Copland DA, Frank MJ, Lewis SJ,

Shine JM. Dopaminergic basis for impairments in functional

connectivity across subdivisions of the striatum in Parkinson’s

disease. Hum Brain Mapp. 2015:36(4):1278–1291.

Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration

with 123I-FP-CIT SPECT striatal uptake. Mov Disord. 2000:15(4):

692–698.

Bergman H, Wichmann T, Karmon B, DeLong MR. The primate

subthalamic nucleus. II. Neuronal activity in the MPTP model of

Parkinsonism. J Neurophysiol. 1994:72(2):507–520.

Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and

Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci. 1973:20(4):415–455.

Brissaud E. Leçons Sur les maladies du Systeme Nerveuses. Escondido,

CA: Masson & Associates, Inc. 1899:2.

Brooks DJ, Ibanez V, Sawle GV, Quinn N, Lees AJ, Mathias CJ, Bannister R, Marsden CD, Frackowiak RS. Differing patterns of striatal

18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol. 1990:28(4):

547–555.

Brown P. Bad oscillations in Parkinson’s disease. J Neural Transm Suppl.

2006:(70):27–30.

Brown P. Abnormal oscillatory synchronisation in the motor system

leads to impaired movement. Curr Opin Neurobiol. 2007:17(6):

656–664.

Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro

V. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci.

2001:21(3):1033–1038.

Downloaded from https://academic.oup.com/cercorcomms/article/4/1/tgad004/7048643 by guest on 21 March 2023

transient symptoms such as a difficulty to initiate movement.

BOLD signals are preferentially sensitive to local field potentials,

which correlate most strongly with gamma band neuronal synchronization (Logothetis et al. 2001; Fox et al. 2007; Engel et al.

2013). In addition, BOLD variance can be explained by independent contributions of beta and alpha band power (Scheeringa et al.

2011). Therefore, the FC observed in the present study was likely

to be inf luenced by gamma band neural synchronization as well

as beta and alpha frequency ranges. This assumption should be

tested in studies using simultaneous electroencephalogram fMRI

acquisition.

The present study has limitations. First, because of the limited

availability of the PET scanning, the number of subjects was

relatively small. Second, rest-state FC in this study was estimated

using concatenated time series during rest periods between

motor-task block rather than using continuous resting-state

fMRI. Rest-state FC, therefore, was not attributable purely to

rest and can involve the preparation for the motor-task (Fair

et al. 2007). Third, significantly higher FC between the STN

and motor cortices was observed in PD patients than HC not

during motor-task but during rest-state, though interaction of

group and fMRI condition (motor-task and rest-state) did not

reach a statistically significant level. Therefore, further studies

are needed to clarify whether the excessive FC in PD patients

occurs specifically during rest or not. Fourth, we did not evaluate

FC under dopaminergic treatment since the treatment effects

may be complex including not only normalization on dopaminedepleted area but also over-stimulation on dopamine-preserved

area.

Dopamine-depleted areas in the striatum exhibited decreased

FC with motor cortices and STN and increased FC within the

posterior striatum in PD patients both during motor-task and

rest-state in this study. In addition, the STN regions that demonstrated reduced FC with striatal dopamine-depleted areas exhibited abnormal temporal synchronicity of fMRI activity with the

lateral premotor and primary motor cortices only during reststate in PD patients. These findings highlight novel therapeutic targets for DBS, including the putamen (Montgomery et al.

2011). Future studies should clarify the key factors linking striatal dopamine depletion and impaired control of activity in the

indirect and hyperdirect pathways in PD patients.

Atsushi Shima et al. |

Kondabolu K, Roberts EA, Bucklin M, McCarthy MM, Kopell N,

Han X. Striatal cholinergic interneurons generate beta and

gamma oscillations in the corticostriatal circuit and produce motor deficits. Proc Natl Acad Sci USA. 2016:113(22):

E3159–E3168.

Kurani AS, Seidler RD, Burciu RG, Comella CL, Corcos DM, Okun

MS, MacKinnon CD, Vaillancourt DE. Subthalamic nucleus—

sensorimotor cortex functional connectivity in de novo and moderate Parkinson’s disease. Neurobiol Aging. 2015:36(1):462–469.

Laakso A, Bergman J, Haaparanta M, Vilkman H, Solin O, Hietala J.

[18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine

transporter with PET: characterization in human subjects.

Synapse. 1998:28(3):244–250.

Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal

PK, de la Fuente-Fernandez R, Calne DB, et al. In vivo positron

emission tomographic evidence for compensatory changes in

presynaptic dopaminergic nerve terminals in Parkinson’s disease.

Ann Neurol. 2000:47(4):493–503.

Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. Synchronized

neuronal discharge in the basal ganglia of Parkinsonian patients

is limited to oscillatory activity. J Neurosci. 2002:22(7):2855–2861.

Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P,

Zrinzo L, Hariz MI, Friston K, Brown P. Resting oscillatory corticosubthalamic connectivity in patients with Parkinson’s disease.

Brain. 2011:134(2):359–374.

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature.

2001:412(6843):150–157.

Luo C, Song W, Chen Q, Zheng Z, Chen K, Cao B, Yang J, Li J,

Huang X, Gong Q, et al. Reduced functional connectivity in earlystage drug-naive Parkinson’s disease: a resting-state fMRI study.

Neurobiol Aging. 2014:35(2):431–441.

Magill PJ, Bolam JP, Bevan MD. Dopamine regulates the impact of

the cerebral cortex on the subthalamic nucleus-globus pallidus

network. Neuroscience. 2001:106(2):313–330.

Mathys C, Caspers J, Langner R, Sudmeyer M, Grefkes C, Reetz K,

Moldovan AS, Michely J, Heller J, Eickhoff CR, et al. Functional

connectivity differences of the subthalamic nucleus related to

Parkinson’s disease. Hum Brain Mapp. 2016:37(3):1235–1253.

McCarthy MM, Moore-Kochlacs C, Gu X, Boyden ES, Han X, Kopell N.

Striatal origin of the pathologic beta oscillations in Parkinson’s

disease. Proc Natl Acad Sci USA. 2011:108(28):11620–11625.

Montgomery EB Jr, Huang H, Walker HC, Guthrie BL, Watts RL.

High-frequency deep brain stimulation of the putamen improves

bradykinesia in Parkinson’s disease. Mov Disord. 2011:26(12):

2232–2238.

Nambu A, Tachibana Y, Chiken S. Cause of Parkinsonian symptoms:

firing rate, firing pattern or dynamic activity changes? Basal

Ganglia. 2015:5(1):1–6.

Oguri T, Sawamoto N, Tabu H, Urayama S, Matsuhashi M, Matsukawa

N, Ojika K, Fukuyama H. Overlapping connections within the

motor cortico-basal ganglia circuit: fMRI-tractography analysis.

NeuroImage. 2013:78:353–362.

Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971:9(1):97–113.

Pan L, Dai JZ, Wang BJ, Xu WM, Zhou LF, Chen XR. Stereotactic

gamma thalamotomy for the treatment of Parkinsonism. Stereotact Funct Neurosurg. 1996:66(Suppl 1):329–332.

Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model

of shape and appearance for subcortical brain segmentation.

NeuroImage. 2011:56(3):907–922.

Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel

W, Obeso J, Marek K, Litvan I, Lang AE, et al. MDS clinical

Downloaded from https://academic.oup.com/cercorcomms/article/4/1/tgad004/7048643 by guest on 21 March 2023

Damodaran S, Cressman JR, Jedrzejewski-Szmek Z, Blackwell KT.

Desynchronization of fast-spiking interneurons reduces betaband oscillations and imbalance in firing in the dopaminedepleted striatum. J Neurosci. 2015:35(3):1149–1159.

Duval C, Panisset M, Strafella AP, Sadikot AF. The impact of ventrolateral thalamotomy on tremor and voluntary motor behavior

in patients with Parkinson’s disease. Exp Brain Res. 2006:170(2):

160–171.

Engel AK, Gerloff C, Hilgetag CC, Nolte G. Intrinsic coupling

modes: multiscale interactions in ongoing brain activity. Neuron.

2013:80(4):867–886.

Fahn S, Elton R, Members of the UPDRS Development Committee.

Unified Parkinson’s Disease Rating Scale. Florham Park, NJ: Macmillan Health Care Information; 1987.

Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger

KK, Fox MD, Snyder AZ, Raichle ME, Petersen SE. A method for

using blocked and event-related fMRI data to study "resting state"

functional connectivity. NeuroImage. 2007:35(1):396–405.

Fogelson N, Williams D, Tijssen M, van Bruggen G, Speelman H,

Brown P. Different functional loops between cerebral cortex

and the subthalmic area in Parkinson’s disease. Cereb Cortex.

2006:16(1):64–75.

Fox MD, Snyder AZ, Vincent JL, Raichle ME. Intrinsic fluctuations within cortical systems account for intertrial variability in

human behavior. Neuron. 2007:56(1):171–184.

Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH,

Ravert HT, Dannals RF. Positron emission tomographic imaging of

the dopamine transporter with 11C-WIN 35,428 reveals marked

declines in mild Parkinson’s disease. Ann Neurol. 1993:34(3):

423–431.

Furukawa K, Shima A, Kambe D, Nishida A, Wada I, Sakamaki H,

Yoshimura K, Terada Y, Sakato Y, Mitsuhashi M, et al. Motor

progression and Nigrostriatal neurodegeneration in Parkinson

disease. Ann Neurol. 2022:92(1):110–121.

Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K.

Optical deconstruction of Parkinsonian neural circuitry. Science.

2009:324(5925):354–359.

Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I.

Spatial remapping of cortico-striatal connectivity in Parkinson’s

disease. Cereb Cortex. 2010:20(5):1175–1186.

Hirschmann J, Ozkurt TE, Butz M, Homburger M, Elben S, Hartmann

CJ, Vesper J, Wojtecki L, Schnitzler A. Differential modulation of

STN-cortical and cortico-muscular coherence by movement and

levodopa in Parkinson’s disease. NeuroImage. 2013:68:203–213.

Hutchison WD, Dostrovsky JO, Walters JR, Courtemanche R, Boraud

T, Goldberg J, Brown P. Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and

human recordings. J Neurosci. 2004:24(42):9240–9243.

Ishii T, Sawamoto N, Tabu H, Kawashima H, Okada T, Togashi

K, Takahashi R, Fukuyama H. Altered striatal circuits underlie

characteristic personality traits in Parkinson’s disease. J Neurol.

2016:263(9):1828–1839.

Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L,

Huber S, Koller W, Olanow C, Shoulson I et al. 1990. Variable

expression of Parkinson’s disease: a base-line analysis of the

DATATOP cohort. The Parkinson Study Group. Neurology 40(10):

1529–1534.

Jenkinson M. Fast, automated, N-dimensional phase-unwrapping

algorithm. Magn Reson Med. 2003:49(1):193–197.

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and

motion correction of brain images. NeuroImage. 2002:17(2):

825–841.

10

Cerebral Cortex Communications, 2023, Vol. 4, No. 1

Tachibana Y, Iwamuro H, Kita H, Takada M, Nambu A. Subthalamopallidal interactions underlying Parkinsonian neuronal

oscillations in the primate basal ganglia. Eur J Neurosci. 2011:34(9):

1470–1484.

Tomlinson CL, Stowe R, Patel S, Rick C, Gray R, Clarke CE. Systematic

review of levodopa dose equivalency reporting in Parkinson’s

disease. Mov Disord. 2010:25(15):2649–2653.

Tseng KY, Kasanetz F, Kargieman L, Riquelme LA, Murer

MG. Cortical slow oscillatory activity is reflected in the

membrane potential and spike trains of striatal neurons in

rats with chronic nigrostriatal lesions. J Neurosci. 2001:21(16):

6430–6439.

Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ. Which clinical sign

of Parkinson’s disease best reflects the nigrostriatal lesion? Ann

Neurol. 1997:41(1):58–64.

Wang J, Zuo CT, Jiang YP, Guan YH, Chen ZP, Xiang JD, Yang

LQ, Ding ZT, Wu JJ, Su HL. 18F-FP-CIT PET imaging and

SPM analysis of dopamine transporters in Parkinson’s disease in various Hoehn & Yahr stages. J Neurol. 2007:254(2):

185–190.

Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E,

Hodaie M, Lang AE, Dostrovsky JO. Beta oscillatory activity

in the subthalamic nucleus and its relation to dopaminergic response in Parkinson’s disease. J Neurophysiol. 2006:96(6):

3248–3256.

West TO, Berthouze L, Halliday DM, Litvak V, Sharott A, Magill PJ,

Farmer SF. Propagation of beta/gamma rhythms in the corticobasal ganglia circuits of the Parkinsonian rat. J Neurophysiol.

2018:119(5):1608–1628.

Wilson CJ. Oscillators and oscillations in the basal ganglia. Neuroscientist. 2015:21(5):530–539.

Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain.

2013:136(3):696–709.

Yamao Y, Sawamoto N, Kunieda T, Inano R, Shibata S, Kikuchi T,

Arakawa Y, Yoshida K, Matsumoto R, Ikeda A, et al. Changes

in distributed motor network connectivity correlates with functional outcome after surgical resection of brain tumors. Neurosurgery Practice. 2023:4(1):1–9.

Yu R, Liu B, Wang L, Chen J, Liu X. Enhanced functional

connectivity between putamen and supplementary motor

area in Parkinson’s disease patients. PLoS One. 2013:8(3):

e59717.

Zhang Y, Brady M, Smith S. Segmentation of brain MR images

through a hidden Markov random field model and the

expectation-maximization algorithm. IEEE Trans Med Imaging.

2001:20(1):45–57.

Downloaded from https://academic.oup.com/cercorcomms/article/4/1/tgad004/7048643 by guest on 21 March 2023

diagnostic criteria for Parkinson’s disease. Mov Disord.

2015:30(12):1591–1601.

Prodoehl J, Yu H, Little DM, Abraham I, Vaillancourt DE. Region

of interest template for the human basal ganglia: comparing

EPI and standardized space approaches. NeuroImage. 2008:39(3):

956–965.

Rommelfanger KS, Wichmann T. Extrastriatal dopaminergic circuits

of the basal ganglia. Front Neuroanat. 2010:4:139.

Ruppert MC, Greuel A, Tahmasian M, Schwartz F, Sturmer S, Maier

F, Hammes J, Tittgemeyer M, Timmermann L, van Eimeren T,

et al. Network degeneration in Parkinson’s disease: multimodal

imaging of nigro-striato-cortical dysfunction. Brain. 2020:143(3):

944–959.

Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks

DJ. Cognitive deficits and striato-frontal dopamine release in

Parkinson’s disease. Brain. 2008:131(5):1294–1302.

Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris

DG, Hagoort P, Bastiaansen MC. Neuronal dynamics underlying

high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron. 2011:69(3):572–583.

Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y,

Baldwin RM, Fussell B, Smith EO, Charney DS, et al. Decreased

single-photon emission computed tomographic [123I]beta-CIT

striatal uptake correlates with symptom severity in Parkinson’s

disease. Ann Neurol. 1995:38(4):589–598.

Sharott A, Magill PJ, Harnack D, Kupsch A, Meissner W, Brown P.

Dopamine depletion increases the power and coherence of betaoscillations in the cerebral cortex and subthalamic nucleus of the

awake rat. Eur J Neurosci. 2005:21(5):1413–1422.

Sharott A, Vinciati F, Nakamura KC, Magill PJ. A population of indirect

pathway striatal projection neurons is selectively entrained to

Parkinsonian Beta oscillations. J Neurosci. 2017:37(41):9977–9998.

Simioni AC, Dagher A, Fellows LK. Compensatory striatal-cerebellar

connectivity in mild-moderate Parkinson’s disease. Neuroimage

Clin. 2016:10:54–62.

Singh A, Mewes K, Gross RE, DeLong MR, Obeso JA, Papa SM. Human

striatal recordings reveal abnormal discharge of projection neurons in Parkinson’s disease. Proc Natl Acad Sci USA. 2016:113(34):

9629–9634.

Smith SM. Fast robust automated brain extraction. Hum Brain Mapp.

2002:17(3):143–155.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE,

Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney

DE, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004:23(Suppl 1):

S208–S219.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る