リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Genetic analysis of neurons involved in sleep-wake regulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Genetic analysis of neurons involved in sleep-wake regulation

柏木, 光昭 筑波大学 DOI:10.15068/00161549

2020.10.06

概要

Mammalian sleep comprises two distinct states, rapid eye movement (REM or paradoxical) sleep and non-REM (NREM) sleep. Classical transection and pharmacological studies suggest that, in addition to the hypothalamus, the brainstem is essential for REM and NREM sleep. The role of the pons in REM sleep has been actively studied, however, those that of in NREM sleep remains less clear. Here, I identified a circuit distributed in the midbrain, pons, and medulla that promotes NREM sleep in mice. I focused on the sublaterodorsal tegmentum (SubLDT), an area implicated in dual regulation of REM and NREM sleep. Chemogenetic activation of the neurons positive for the neuropeptide neurotensin promote NREM sleep. In contrast, functional inactivation of these neurons with tetanus toxin resulted in decrease of NREM sleep, suggesting that these neurons play important role for NREM sleep regulation. Subsequent anterograde tracing and chemogenetic analyses identified putative downstream NREM sleep-promoting neurons in the dorsal deep mesencephalic nucleus (dDpMe), lateral part of the periaqueductal gray (lPAG), and medial vestibular nucleus (MVe), all of which were located in the brainstem and previously unknown population for regulating NREM sleep. Remarkably, all of these putative downstream NREM sleep promoting neurons were also neurotensinergic. Infusion of neurotensin peptide into the fourth ventricle, which faces dorsal surface of the pons and medulla, induced a behavioral quiescent with NREM sleep-like cortical activity. In contrast, mice deficient for neurotensin exhibited increased REM sleep, implicating the involvement of the neuropeptide itself. These findings identify a widely distributed NREM sleep-regulating circuit in the brainstem with a common molecular property.

参考文献

Adamantidis, A. R. et al. (2007) ‘Neural substrates of awakening probed with optogenetic control of hypocretin neurons.’, Nature, 450(7168), pp. 420–4. doi: 10.1038/nature06310.

Anaclet, C. et al. (2012) ‘Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem’, Journal of Neuroscience, 32(50), pp. 17970–17976.

Anaclet, C. et al. (2014) ‘The GABAergic parafacial zone is a medullary slow wave sleep- promoting center’, Nature Neuroscience, 17(9), pp. 1217–1224.

Armbruster, B. N. et al. (2007) ‘Evolving the lock to fit the key to create a family of G protein- coupled receptors potently activated by an inert ligand’, Proceedings of the National Academy of Sciences, 104(12), pp. 5163–5168.

Aserinsky, E. and Kleitman, N. (1953) ‘Regularly Occurring Periods of Eye Motility, and Concomitant Phenomena, during Sleep’, Science (New York, N.Y.), 118(3062), pp. 273–274. doi: 10.1176/appi.neuropsych.15.4.454.

Batini, C. et al. (1958) ‘Presistent patterns of wakefulness in the pretrigeminal midpontine preparation.’, Science, 128(3314), pp. 30–32.

Boissard, R. et al. (2002) ‘The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: A combined microinjection and functional neuroanatomical study’, European Journal of Neuroscience, 16(10), pp. 1959–1973.

Boissard, R. et al. (2003) ‘Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset’, European Journal of Neuroscience, 18(6), pp. 1627–1639.

Boucetta, S. et al. (2014) ‘Discharge Profiles across the Sleep-Waking Cycle of Identified Cholinergic, GABAergic, and Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat’, Journal of Neuroscience, 34(13), pp. 4708–4727.

Cape, E. G. et al. (2000) ‘Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep.’, Journal of neuroscience, 20(22), pp. 8452–8461.

Castel, M.-N. et al. (1989) ‘Effects of ICV administration of neurotensin and analogs on EEG in rats’, Peptides, 10, pp. 95–101.

Chung, S. et al. (2017) ‘Identification of preoptic sleep neurons using retrograde labelling and gene profiling’, Nature, 545(7655), pp. 477–481.

Clément, O. et al. (2011) ‘Evidence that neurons of the sublaterodorsal tegmental nucleus triggering paradoxical (REM) sleep are glutamatergic’, Sleep. Associated Professional Sleep Societies,LLC, 34(4). doi: 10.1093/sleep/34.4.419.

Clineschmidt, B. V and McGuffin, J. C. (1977) ‘Neurotensin administered intracisternally inhibits responsiveness of mice to noxious stimuli.’, European journal of pharmacology, 46(4), pp. 395–396.

Crochet, S., Onoe, H. and Sakai, K. (2006) ‘A potent non-monoaminergic paradoxical sleep inhibitory system: a reverse microdialysis and single-unit recording study’, European Journal of Neuroscience, 24(5), pp. 1404–1412.

Dobner, P. R. et al. (2001) ‘Neurotensin-deficient mice show altered responses to antipsychotic drugs’, Proceedings of the National Academy of Sciences, 98(14), pp. 8048–8053.

Von Economo, C. (1930) ‘Sleep As a Problem of Localization’, The Journal of Nervous and Mental Disease, 71(march), pp. 249–259. doi: 10.1097/00005053-193003000-00001.

Erickson, E. T. M. et al. (2019) ‘Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control’, Frontiers in Neuroscience, 13, p. 755.

Fuller, P. et al. (2011) ‘Reassessment of the structural basis of the ascending arousal system’, The Journal of Comparative Neurology, 519(5), pp. 933–956. doi: 10.1002/cne.22559.

Furutani, N. et al. (2013) ‘Neurotensin Co-Expressed in Orexin-Producing Neurons in the Lateral Hypothalamus Plays an Important Role in Regulation of Sleep/Wakefulness States’, PLoS ONE, 8(4), p. e62391.

Hayashi, Y. et al. (2015) ‘Cells of a common developemtal origin or REM/non-REM sleep and wakefulness in Mice’, Science, 350(6263), pp. 957–962.

Iwasaki, K. et al. (2018) ‘Ablation of Central Serotonergic Neurons Decreased REM Sleep and Attenuated Arousal Response’, Frontiers in Neuroscience, 12, p. 12:535.

Jiang-Xie, L.-F. et al. (2019) ‘A Common Neuroendocrine Substrate for Diverse General Anesthetics and Sleep’, Neuron, in press. doi: https://doi.org/10.1016/j.neuron.2019.03.033. Kompotis, K. et al. (2019) ‘Rocking Promotes Sleep in Mice through Rhythmic Stimulation of the Vestibular System’, Current Biology, 29(3), pp. 392–401.

Krenzer, M. et al. (2011) ‘Brainstem and Spinal Cord Circuitry Regulating REM Sleep and Muscle Atonia’, PLoS ONE, 6(10), p. e24998.

Kroeger, D. et al. (2018) ‘Galanin neurons in the ventrolateral preoptic area promote sleep and heat loss in mice’, Nature Communications, 9(1), p. 4129.

Leinninger, G. M. et al. (2011) ‘Leptin Action via Neurotensin Neurons Controls Orexin , the Mesolimbic Dopamine System and Energy Balance’, Cell Metabolism, 14(3), pp. 313–323.

Li, J. et al. (2016) ‘An obligatory role for neurotensin in high-fat-diet-induced obesity’, Nature, 533(7603), pp. 411–415.

Lu, J. et al. (2006) ‘A putative flip – flop switch for control of REM sleep’, Nature, 441(7093), pp. 589–594.

Ma, C. et al. (2019) ‘Sleep Regulation by Neurotensinergic Neurons in a Thalamo-Amygdala Circuit’, Neuron. doi: 10.1016/j.neuron.2019.05.015.

Machold, R. and Fishell, G. (2005) ‘Math1 Is Expressed in Temporally Discrete Pools of Cerebellar Rhombic-Lip Neural Progenitors’, Neuron, 48(1), pp. 17–24.

Madisen, L. et al. (2010) ‘A robust and high-throughput Cre reporting and characterization system for the whole mouse brain’, Nature Neuroscience, 13(1), pp. 133–140.

Moruzzi, G. and Magoun, H. W. (1949) ‘Brain stem reticular formation and activation of the EEG’,Electroencephalography and Clinical Neurophysiology, 1(4), pp. 455–473.

Naganuma, F. et al. (2019) ‘Lateral hypothalamic neurotensin neurons promote arousal and hyperthermia’, PLOS Biology, 17(3), p. e3000172.

Nakashiba, T. et al. (2008) ‘Transgenic Inhibition of Synaptic Transmission Reveals Role of CA3 Output in Hippocampal Learning’, Science, 319(5867), pp. 1260–1264.

Nauta, W. J. H. (1946) ‘Hypothalamic regulation of sleep in rats; an experimental study’, Journal of Neurophysiology, 9(4), pp. 285–316.

Rioux, F. et al. (1981) ‘The hypotensive effect of centrally administered neurotensin in rats.’,European journal of pharmacology, 69(3), pp. 241–247.

Saito, Y. C. et al. (2013) ‘GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons’, Frontiers in Neural Circuits, 7(2), p. 192.

Sakai, K. (1988) ‘Executive mechanisms of paradoxical sleep.’, Archives Italiennes de Biologie, 126(4), pp. 239–257.

Sakai, K. (2015) ‘Paradoxical (Rapid Eye Movement) sleep-on neurons in the laterodorsal pontine tegmentum in mice’, Neuroscience, 310, pp. 455–471.

Sakai, K. (2018) ‘Single unit activity of periaqueductal gray and deep mesencephalic nucleus neurons involved in sleep stage switching in the mouse’, European Journal of Neuroscience, 47(9),pp. 1110–1126.

Sallanon, M. et al. (1989) ‘Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat’, Neuroscience, 32(3), pp. 669–683.

Sapin, E. et al. (2009) ‘Localization of the Brainstem GABAergic Neurons Controlling Paradoxical (REM) Sleep’, PLoS ONE, 4(1), p. e4272.

Sastre, J.-P., Sakai, K. and Jouvet, M. (1981) ‘Are the gigantocellular tegmental field neurons responsible for paradoxical sleep?’, Brain Research, 229(1), pp. 147–161. doi: 10.1016/0006- 8993(81)90752-6.

Schroeder, L. E. et al. (2019) ‘Mapping the populations of neurotensin neurons in the male mouse brain’, Neuropeptides, 76, p. 101930.

Sherin, J. E. et al. (1996) ‘Activation of ventrolateral preoptic neurons during sleep.’, Science, 271(5246), pp. 216–219.

Siegel, J. M. et al. (1996) ‘The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implications for the evolution of sleep.’, The Journal of neuroscience : the official journal of the Society for Neuroscience, 16(10), pp. 3500–3506. Valencia Garcia, S. et al. (2016) ‘Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder’, Brain, 140(2), pp. 414–428.

Vanni-Mercier, G. et al. (1989) ‘Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat.’, Archives Italiennes de Biologie, 127(3), pp. 133– 164.

Wang, V. Y., Rose, M. F. and Zoghbi, H. Y. (2005) ‘Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum’, Neuron, 48(1), pp. 31–43.

Weber, F. et al. (2015) ‘Control of REM sleep by ventral medulla GABAergic neurons’, Nature, 526(7573), pp. 435–438.

Weber, F. et al. (2018) ‘Regulation of REM and Non-REM Sleep by Periaqueductal GABAergic Neurons’, Nature Communications, 9(1), p. 354.

Weber, F. and Dan, Y. (2016) ‘Circuit-based interrogation of sleep control.’, Nature, 538(7623),pp. 51–59.

Yasuda, K. et al. (2017) ‘Schizophrenia-like phenotypes in mice with NMDA receptor ablation in intralaminar thalamic nucleus cells and gene therapy-based reversal in adults’, Translational Psychiatry, 7(2), p. e1047.

Zhang, Z. et al. (2015) ‘Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists’, Nature Neuroscience, 18(4), pp. 553–561.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る