リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tensor renormalization group approach to four-dimensional complex ϕ4 theory at finite density」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tensor renormalization group approach to four-dimensional complex ϕ4 theory at finite density

Akiyama, Shinichiro Kadoh, Daisuke 藏増, 嘉伸 Yamashita, Takumi Yoshimura, Yusuke 筑波大学

2022.06.06

概要

Tensor network is an attractive approach to the field theory with negative sign problem. The complex φ4 theory at finite density is a test bed for numerical algorithms to verify their effectiveness. The model shows a characteristic feature called the Silver Blaze phenomenon associated with the sign problem in the large volume limit at low temperature. We analyze the four-dimensional model employing the anisotropic tensor renormalization group algorithm with a parallel computation. We find a clear signal of the Silver Blaze phenomenon on a large volume of V = 10244, which implies that the tensor network approach is effective even for four-dimensional field theory beyond two dimensions.

参考文献

[1] M. Levin and C.P. Nave, Tensor renormalization group approach to 2D classical lattice models, Phys. Rev. Lett. 99 (2007) 120601 [cond-mat/0611687] [INSPIRE].

[2] Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang and T. Xiang, Coarse-graining renormalization by higher-order singular value decomposition, Phys. Rev. B 86 (2012) 045139.

[3] D. Adachi, T. Okubo and S. Todo, Anisotropic Tensor Renormalization Group, Phys. Rev. B102 (2020) 054432 [arXiv:1906.02007] [INSPIRE].

[4] D. Kadoh and K. Nakayama, Renormalization group on a triad network, arXiv:1912.02414 [INSPIRE].

[5] Y. Shimizu, Tensor renormalization group approach to a lattice boson model, Mod. Phys. Lett. A 27 (2012) 1250035 [INSPIRE].

[6] Y. Shimizu and Y. Kuramashi, Grassmann tensor renormalization group approach to one-flavor lattice Schwinger model, Phys. Rev. D 90 (2014) 014508 [arXiv:1403.0642] [INSPIRE].

[7] Y. Shimizu and Y. Kuramashi, Critical behavior of the lattice Schwinger model with a topological term at θ = π using the Grassmann tensor renormalization group, Phys. Rev. D 90 (2014) 074503 [arXiv:1408.0897] [INSPIRE].

[8] Y. Shimizu and Y. Kuramashi, Berezinskii-Kosterlitz-Thouless transition in lattice Schwinger model with one flavor of Wilson fermion, Phys. Rev. D 97 (2018) 034502 [arXiv:1712.07808] [INSPIRE].

[9] S. Takeda and Y. Yoshimura, Grassmann tensor renormalization group for the one-flavor lattice Gross-Neveu model with finite chemical potential, PTEP 2015 (2015) 043B01 [arXiv:1412.7855] [INSPIRE].

[10] H. Kawauchi and S. Takeda, Tensor renormalization group analysis of CP (N − 1) model, Phys. Rev. D 93 (2016) 114503 [arXiv:1603.09455] [INSPIRE].

[11] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Tensor network formulation for two-dimensional lattice N = 1 Wess-Zumino model, JHEP 03 (2018) 141 [arXiv:1801.04183] [INSPIRE].

[12] R. Sakai, S. Takeda and Y. Yoshimura, Higher order tensor renormalization group for relativistic fermion systems, PTEP 2017 (2017) 063B07 [arXiv:1705.07764] [INSPIRE].

[13] Y. Yoshimura, Y. Kuramashi, Y. Nakamura, S. Takeda and R. Sakai, Calculation of fermionic Green functions with Grassmann higher-order tensor renormalization group, Phys. Rev. D 97 (2018) 054511 [arXiv:1711.08121] [INSPIRE].

[14] J. Unmuth-Yockey, J. Zhang, A. Bazavov, Y. Meurice and S.-W. Tsai, Universal features of the Abelian Polyakov loop in 1 + 1 dimensions, Phys. Rev. D 98 (2018) 094511 [arXiv:1807.09186] [INSPIRE].

[15] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Tensor network analysis of critical coupling in two dimensional φ4 theory, JHEP 05 (2019) 184 [arXiv:1811.12376] [INSPIRE].

[16] N. Butt, S. Catterall, Y. Meurice, R. Sakai and J. Unmuth-Yockey, Tensor network formulation of the massless Schwinger model with staggered fermions, Phys. Rev. D 101 (2020) 094509 [arXiv:1911.01285] [INSPIRE].

[17] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, Investigation of complex φ4 theory at finite density in two dimensions using TRG, JHEP 02 (2020) 161 [arXiv:1912.13092] [INSPIRE].

[18] Y. Kuramashi and Y. Yoshimura, Tensor renormalization group study of two-dimensional U(1) lattice gauge theory with a θ term, JHEP 04 (2020) 089 [arXiv:1911.06480] [INSPIRE].

[19] S. Akiyama, Y. Kuramashi, T. Yamashita and Y. Yoshimura, Phase transition of four-dimensional Ising model with higher-order tensor renormalization group, Phys. Rev. D100 (2019) 054510 [arXiv:1906.06060] [INSPIRE].

[20] S. Akiyama, Y. Kuramashi, T. Yamashita and Y. Yoshimura, Phase transition of four-dimensional Ising model with tensor network scheme, PoS LATTICE2019 (2019) 138 [arXiv:1911.12954] [INSPIRE].

[21] G. Aarts, Can stochastic quantization evade the sign problem? The relativistic Bose gas at finite chemical potential, Phys. Rev. Lett. 102 (2009) 131601 [arXiv:0810.2089] [INSPIRE].

[22] M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Monte Carlo simulations on the Lefschetz thimble: Taming the sign problem, Phys. Rev. D 88 (2013) 051501 [arXiv:1303.7204] [INSPIRE].

[23] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, Hybrid Monte Carlo on Lefschetz thimbles — A study of the residual sign problem, JHEP 10 (2013) 147 [arXiv:1309.4371] [INSPIRE].

[24] Y. Mori, K. Kashiwa and A. Ohnishi, Application of a neural network to the sign problem via the path optimization method, PTEP 2018 (2018) 023B04 [arXiv:1709.03208] [INSPIRE].

[25] C. Gattringer and T. Kloiber, Lattice study of the Silver Blaze phenomenon for a charged scalar φ4 field, Nucl. Phys. B 869 (2013) 56 [arXiv:1206.2954] [INSPIRE].

[26] O. Orasch and C. Gattringer, Canonical simulations with worldlines: An exploratory study in φ4 lattice field theory, Int. J. Mod. Phys. A 33 (2018) 1850010 [arXiv:1708.02817] [INSPIRE].

[27] H. Oba, Cost reduction of the bond-swapping part in an anisotropic tensor renormalization group, PTEP 2020 (2020) 013B02 [arXiv:1908.07295] [INSPIRE].

[28] G. Aarts, Complex Langevin dynamics at finite chemical potential: Mean field analysis in the relativistic Bose gas, JHEP 05 (2009) 052 [arXiv:0902.4686] [INSPIRE].

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る