リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr–Trp Dipeptide in Brains Treated with the Amyloid-β Peptide」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr–Trp Dipeptide in Brains Treated with the Amyloid-β Peptide

Hamano, Momoko 濱野, 桃子 ハマノ, モモコ Ichinose, Takashi 市瀬, 嵩志 イチノセ, タカシ Yasuda, Tokio 安田, 時生 ヤスダ, トキオ Ishijima, Tomoko 石島, 智子 イシジマ, トモコ Okada, Shinji 岡田, 晋治 オカダ, シンジ Abe, Keiko 阿部, 啓子 アベ, ケイコ Tashiro, Kosuke 田代, 康介 タシロ, コウスケ Furuya, Shigeki 古屋, 茂樹 フルヤ, シゲキ 九州大学

2023.06.13

概要

Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported th

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

Peighambardoust, S.H.; Karami, Z.; Pateiro, M.; Lorenzo, J.M. A review on health-promoting, biological, and functional aspects

of bioactive peptides in food application. Biomolecules 2021, 11, 631. [CrossRef]

Wu, Y.H.; Samuel, C.; Chen, Y.; Wu, Y.H.S.; Chen, Y.C. Trends and applications of food protein-origin hydrolysates and bioactive

peptides. J. Food Drug Anal. 2022, 30, 172–184. [CrossRef]

Galland, F.; de Espindola, J.S.; Lopes, D.S.; Taccola, M.F.; Pacheco, M.T.B. Food-derived bioactive peptides: Mechanisms of action

underlying inflammation and oxidative stress in the central nervous system. Food Chem. Adv. 2022, 1, 100087. [CrossRef]

Wang, L.; Liu, S.; Xu, J.; Watanabe, N.; Mayo, K.H.; Li, J.; Li, X. Emodin inhibits aggregation of amyloid-β Peptide 1-42 and

improves cognitive deficits in Alzheimer’s disease transgenic mice. J. Neurochem. 2021, 157, 1992–2007. [CrossRef] [PubMed]

Imai, H.; Moriyasu, K.; Nakahata, A.; Maebuchi, M.; Ichinose, T.; Furuya, S. Soy peptide ingestion augments the synthesis and

metabolism of noradrenaline in the mouse brain. Biosci. Biotechnol. Biochem. 2017, 81, 1007–1013. [CrossRef] [PubMed]

Hino, Y.; Koyanagi, A.; Maebuchi, M.; Ichinose, T.; Furuya, S. comparison of the effect of soy and casein-derived peptide

administration on tyrosine and catecholamine metabolism in the mouse brain. J. Nutr. Sci. Vitaminol. 2018, 64, 329–334. [CrossRef]

Ichinose, T.; Moriyasu, K.; Nakahata, A.; Tanaka, M.; Matsui, T.; Furuya, S. Orally administrated dipeptide Ser–Tyr efficiently

stimulates noradrenergic turnover in the mouse brain. Biosci. Biotechnol. Biochem. 2015, 79, 1542–1547. [CrossRef]

Hanh, V.T.; Kobayashi, Y.; Maebuchi, M.; Nakamori, T.; Tanaka, M.; Matsui, T. Quantitative mass spectrometric analysis of dipeptides in protein hydrolysate by a TNBS derivatization-aided standard addition method. Food Chem. 2016, 190, 345–350. [CrossRef]

Ichinose, T.; Murasawa, H.; Ishijima, T.; Okada, S.; Abe, K.; Matsumoto, S.; Matsui, T.; Furuya, S. Tyr–Trp administration

facilitates brain norepinephrine metabolism and ameliorates a short-term memory deficit in a mouse model of Alzheimer’s

disease. PLoS ONE 2020, 15, e0232233. [CrossRef]

Nutrients 2023, 15, 2731

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

17 of 18

Hamano, M.; Sayano, T.; Kusada, W.; Kato, H.; Furuya, S. Microarray data on altered transcriptional program of Phgdh-deficient

mouse embryonic fibroblasts caused by L-serine depletion. Data Brief 2016, 7, 1598–1601. [CrossRef]

Hamano, M.; Esaki, K.; Moriyasu, K.; Yasuda, T.; Mohri, S.; Tashiro, K.; Hirabayashi, Y.; Furuya, S. Hepatocyte-specific Phgdhdeficient mice culminate in mild obesity, insulin resistance, and enhanced vulnerability to protein starvation. Nutrients 2021,

13, 3468. [CrossRef]

Kawakami, Y.; Yoshida, K.; Hoon, J.; Suzuki, T.; Azuma, N.; Sakai, K.; Hashikawa, T.; Watanabe, M.; Yasuda, K.; Kuhara, S.; et al.

Impaired neurogenesis in embryonic spinal cord of Phgdh knockout mice, a serine deficiency disorder model. Neurosci. Res. 2009,

63, 184–193. [CrossRef] [PubMed]

Takashima, Y.; Hamano, M.; Yoshii, K.; Hayano, A.; Fukai, J.; Iwadate, Y.; Kajiwara, K.; Hondoh, H.; Yamanaka, R. Reciprocal

expression of the immune response genes CXCR3 and IFI44L as module hubs are associated with patient survivals in primary

central nervous system lymphoma. Int. J. Clin. Oncol. 2023, 28, 468–481. [CrossRef]

Nakamura, A.; Fujiwara, S.; Ishijima, T.; Okada, S.; Nakai, Y.; Matsumoto, I.; Misaka, T.; Abe, K. Neuron differentiation-related

genes are up-regulated in the hypothalamus of odorant-inhaling rats subjected to acute restraint stress. J. Agric. Food Chem. 2010,

58, 7922–7929. [CrossRef]

Okada, S.; Abuyama, M.; Yamamoto, R.; Kondo, T.; Narukawa, M.; Misaka, T. Dietary zinc status reversibly alters both the

feeding behaviors of the rats and gene expression patterns in diencephalon. BioFactors 2012, 38, 203–218. [CrossRef] [PubMed]

Bolstad, B.M.; Irizarry, R.A.; Åstrand, M.; Speed, T.P. A comparison of normalization methods for high density array data based

on variance and bias. Bioinformatics 2003, 19, 185–193. [CrossRef] [PubMed]

Smyth, G.K. Limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology Solution Using R and

Bioconductor; Springer: Berlin/Heidelberg, Germany, 2006; pp. 397–420.

Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [CrossRef] [PubMed]

Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation,

visualization, and integrated discovery. Genome Biol. 2003, 4, P3. [CrossRef]

Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;

Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.

Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef]

Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.;

Bork, P.; et al. STRING V11: Protein-protein association networks with increased coverage, supporting functional discovery in

genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef]

Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A

software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [PubMed]

Tsai, K.J.; Tsai, Y.C.; Shen, C.K.J. G-CSF rescues the memory impairment of animal models of Alzheimer’s disease. J. Exp. Med.

2007, 204, 1273–1280. [PubMed]

Demuro, A.; Parker, I.; Stutzmann, G.E. Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 2010, 285,

12463–12468. [CrossRef] [PubMed]

Wójtowicz, S.; Strosznajder, A.K.; Jezyna,

M.; Strosznajder, J.B. The novel role of PPAR alpha in the brain: Promising target in

therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem. Res. 2020, 45, 972–988. [CrossRef] [PubMed]

Strosznajder, A.K.; Wójtowicz, S.; Jezyna,

M.J.; Sun, G.Y.; Strosznajder, J.B. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Med. 2021, 23, 86–98. [CrossRef]

Caccamo, A.; Maldonado, M.A.; Bokov, A.F.; Majumder, S.; Oddo, S. CBP gene Transfer increases BDNF levels and ameliorates

learning and memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2010, 107, 22687–22692. [CrossRef]

Gui, H.; Gong, Q.; Jiang, J.; Liu, M.; Li, H. Identification of the hub genes in Alzheimer’s disease. Comput. Math. Methods Med.

2021, 2021, 6329041.

Tao, Y.; Han, Y.; Yu, L.; Wang, Q.; Leng, S.X.; Zhang, H. The predicted key molecules, functions, and pathways that bridge mild

cognitive impairment (MCI) and Alzheimer’s disease (AD). Front. Neurol. 2020, 11, 233. [CrossRef]

Khayer, N.; Mirzaie, M.; Marashi, S.A.; Jalessi, M. Rps27a might act as a controller of microglia activation in triggering

neurodegenerative diseases. PLoS ONE 2020, 15, e0239219. [CrossRef]

Yoshida, K.; Furuya, S.; Osuka, S.; Mitoma, J.; Shinoda, Y.; Watanabe, M.; Azuma, N.; Tanaka, H.; Hashikawa, T.; Itohara, S.; et al.

Targeted disruption of the mouse 3-phosphoglycerate dehydrogenase gene causes severe neurodevelopmental defects and results

in embryonic lethality. J. Biol. Chem. 2004, 279, 3573–3577. [CrossRef]

Yang, J.H.; Wada, A.; Yoshida, K.; Miyoshi, Y.; Sayano, T.; Esaki, K.; Kinoshita, M.O.; Tomonaga, S.; Azuma, N.; Watanabe, M.; et al.

Brain-specific Phgdh deletion reveals a pivotal role for l-serine biosynthesis in controlling the level of D-serine, an N-methyl-Daspartate receptor co-agonist, in adult brain. J. Biol. Chem. 2010, 285, 41380–41390. [CrossRef] [PubMed]

Hamano, M.; Haraguchi, Y.; Sayano, T.; Zyao, C.; Arimoto, Y.; Kawano, Y.; Moriyasu, K.; Udono, M.; Katakura, Y.; Ogawa, T.; et al.

Enhanced vulnerability to oxidative stress and induction of inflammatory gene expression in 3-phosphoglycerate dehydrogenasedeficient fibroblasts. FEBS Open Bio 2018, 8, 914–922. [CrossRef] [PubMed]

Sharma, A.; Callahan, L.M.; Sul, J.Y.; Kim, T.K.; Barrett, L.; Kim, M.; Powers, J.M.; Federoff, H.; Eberwine, J. A neurotoxic

phosphoform of Elk-1 associates with inclusions from multiple neurodegenerative diseases. PLoS ONE 2010, 5, e9002. [CrossRef]

Nutrients 2023, 15, 2731

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

18 of 18

Frei, K.; Bodmer, S.; Schwerdel, C.; Fontana, A. Astrocyte-derived interleukin 3 as a growth factor for microglia cells and

peritoneal macrophages. J. Immunol. 1986, 137, 3521–3527. [CrossRef]

McAlpine, C.S.; Park, J.; Griciuc, A.; Kim, E.; Choi, S.H.; Iwamoto, Y.; Kiss, M.G.; Christie, K.A.; Vinegoni, C.; Poller, W.C.; et al.

Astrocytic interleukin-3 programs microglia and limits Alzheimer’s disease. Nature 2021, 595, 701–706. [CrossRef]

Rosa, P.; Zerbinati, C.; Crestini, A.; Canudas, A.M.; Ragona, G.; Confaloni, A.; Iuliano, L.; Calogero, A. Heme Oxygenase-1 and

brain oxysterols metabolism are linked to Egr-1 expression in aged mice cortex, but not in hippocampus. Front. Aging Neurosci.

2018, 10, 363.

Giri, R.K.; Selvaraj, S.K.; Kalra, V.K. Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked

by small inhibitory RNA duplexes for early growth Response-1 messenger RNA. J. Immunol. 2003, 170, 5281–5294.

Hefter, D.; Ludewig, S.; Draguhn, A.; Korte, M. Amyloid, APP, and electrical activity of the brain. Neuroscientist 2020, 26,

231–251. [CrossRef]

Hamano, T.; Shirafuji, N.; Yen, S.H.; Yoshida, H.; Kanaan, N.M.; Hayashi, K.; Ikawa, M.; Yamamura, O.; Fujita, Y.; Kuriyama, M.; et al.

Rho-kinase ROCK inhibitors reduce oligomeric Tau protein. Neurobiol. Aging 2020, 89, 41–54. [CrossRef] [PubMed]

Yu, N.; Huang, Y.; Jiang, Y.; Zou, L.; Liu, X.; Liu, S.; Chen, F.; Luo, J.; Zhu, Y. Ganoderma lucidum triterpenoids (GLTs) reduce

neuronal apoptosis via inhibition of ROCK signal pathway in APP/PS1 transgenic Alzheimer’s disease mice. Oxid. Med. Cell

Longev. 2020, 2020, 9894037. [CrossRef] [PubMed]

Keringer, P.; Furedi, N.; Gaszner, B.; Miko, A.; Pakai, E.; Fekete, K.; Olah, E.; Kelava, L.; Romanovsky, A.A.; Rumbus, Z.; et al. The

hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am. J. Physiol. Endocrinol. Metab.

2022, 322, E10–E23. [CrossRef] [PubMed]

Aisen, P.S. Evaluation of selective COX-2 inhibitors for the treatment of Alzheimer’s disease. J. Pain Symptom Manag. 2002, 23,

S35–S40. [CrossRef]

Fu, Y.; Young, J.F.; Løkke, M.M.; Lametsch, R.; Aluko, R.E.; Therkildsen, M. Revalorisation of bovine collagen as a potential

precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J. Funct.

Foods 2016, 24, 196–206. [CrossRef]

Kitagaki, H. Medical application of substances derived from non-pathogenic fungi Aspergillus oryzae and A. luchuensis-containing

koji. J. Fungi 2021, 7, 243. [CrossRef] [PubMed]

Ayabe, T.; Ano, Y.; Ohya, R.; Kitaoka, S.; Furuyashiki, T. The lacto-tetrapeptide Gly–Thr–Trp–Tyr, β-Lactolin, improves spatial memory functions via dopamine release and D1 receptor activation in the hippocampus. Nutrients 2019, 11, 2469. [CrossRef] [PubMed]

Ano, Y.; Ayabe, T.; Ohya, R.; Kondo, K.; Kitaoka, S.; Furuyashiki, T. Tryptophan-tyrosine dipeptide, the core sequence of

β-Lactolin, improves memory by modulating the dopamine system. Nutrients 2019, 11, 348.

Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities.

Nutrients 2018, 10, 1738. [CrossRef]

Canet, G.; Zussy, C.; Hernandez, C.; Maurice, T.; Desrumaux, C.; Givalois, L. The pathomimetic oAβ25–35 model of Alzheimer’s

disease: Potential for screening of new therapeutic agents. Pharmacol. Ther. 2023, 245, 108398. [CrossRef]

D’Agostino, G.; Russo, R.; Avagliano, C.; Cristiano, C.; Meli, R.; Calignano, A. Palmitoylethanolamide protects against the amyloidβ25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology

2012, 37, 1784–1792. [CrossRef]

Stepanichev, M.Y.; Moiseeva, Y.V.; Lazareva, N.A.; Onufriev, M.V.; Gulyaeva, N.V. Single intracerebroventricular administration

of amyloid-beta (25–35) peptide induces impairment in short-term rather than long-term memory in rats. Brain Res. Bull. 2003, 61,

197–205. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る