リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「粗視化分子シミュレーションを用いたコロイド-ポリマー混合溶液の自己集合と粘性挙動に関する研究 (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

粗視化分子シミュレーションを用いたコロイド-ポリマー混合溶液の自己集合と粘性挙動に関する研究 (本文)

小林, 祐生 慶應義塾大学

2021.03.23

概要

コロイド分散液,高分子溶液などのソフトマター(複雑流体とも呼ばれる)は,複雑な構造に起因する大きな内部自由度を有し,せん断,圧力勾配,磁場などに対し単純な物質には見られないような特異な応答を示す.このソフトマター特有の特徴を利用し,洗剤,化粧品,食品,セメント,塗料・顔料・スラリーなど様々な機能性材料が開発されている.これらの材料の性質は分子構造だけでなくそれらが集まって形成される自己集合構造にも強く影響することが知られている.例えばコロイド懸濁液を例にとると,コロイド粒子がどのような原子で構成されているかといった原子・分子のミクロスケール(〜10nm)の情報と,化粧品や塗料に用いたときの粘度や粘弾性といったマクロスケール(〜1mm)の情報の間に存在する,液体中の粒子がどのように分散または凝集するのかというメソスケール(1〇〜1000nm)の情報も重要となる.つまり,ソフトマターを利用した機能性材料について,発現する物性やそのメカニズムを知るためには,ミクロからマクロまで幅広いスケールにおける物理現象を包括的に理解しなくてはならない.

実験において,分子集合体を正確に観察することは簡単ではなく,さらに集合構造は外力によって,変形・破壊・再生成を行うため,例えば流動下での観察はより困難なものとなる上,再現性の問題も抱えることになる.さらにソフトマターが形成するメソスケールの構造は,濃度,分子構造,粒子形状,流動の速さ,粒子表面の化学的性質などに依存して大きく変化する.したがって,製品開発において望みの物性を得るために費やされる実験の回数やコストは膨大なものとなる.このような複雑な系に対して,計算科学的アプローチは非常に有効な手段となり得る.しかしコンピュータシミュレーションによる解析もまた,幅広い時空間スケールの現象を内部構造の情報を失わずに理解することは容易ではない.

広空間・長時間の現象を理解するためのアプローチとして,Navier-Stokes方程式を基礎方程式とした計算流体力学(CFD: Computational Fluid Dynamics)を用いることが挙げられる.この場合,物質の個性はマクロな構成方程式中に変数として押し込められるので,原子・分子のスケールに加え,ソフトマターの特徴であるメソスケールの構造やダイナミクスの概念も考慮されない.またCFDでは,構成方程式を実際のソフトマター材料の挙動に近づけることが重要となるが,多種多様なソフトマターの挙動を正しく反映する有効な構成方程式は存在せず,現実のプロセスでは非平衡状態であることが多いため構成方程式の提案自体が困難を極める.このように連続体モデルによるシミュレーションを用いると分子構造およびメソスケール構造の詳細が反映されにく く,現象理解には不適である.一方で,分子動力学(MD: Molecular Dynamics)法では,物質を構成している全ての原子・分子1つ1つについて,運動方程式を解くことによって原子・分子の軌跡を追跡するので,構成方程式が未知である場合でも対応できる.しかし,取り扱おうとしている系全体の自由度の数だけ運動方程式を解くことになるため,MD法によってソフトマター系を計算しようとすると膨大な計算量となり,現在の計算機性能をもってしても現実的でない計算時間がかかってしまう.

このようにソフトマターの特徴的な空間スケールおよび時間スケールが,谷間のスケール(メソスケール)に位置するために,従来の計算手法では解析が難しい.そこで分子論的な描像を保ちつつ,ソフトマターにとって重要な分子集合体のメソスコピックなスケールを解析する手法が有効となる.その一つが多粒子衝突動力学(MPCD: Multiparticle Collision Dynamics)法[ϋ^ΈΙ]である.本研究ではメソスコピックなスケールを解析するために,分子動力学法と多粒子衝突動力学法を組み合わせたMD-MPCDハイブリッドシミュレーションを用いた解析を行った.この手法については第章で詳しく説明することにする.

参考文献

[1] A. Malevanets and R. Kapral. Mesoscopic model for solvent dynamics. J. Chem. Phys., Vol. 110, pp. 8605–8613, 1999.

[2] G. Gompper, T. Ihle, D. Kroll, and R. G. Winkler. Multi-particle collision dynamics: A particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv. Polym. Sci., Vol. 221, pp. 1–87, 2009.

[3] M. P. Howard, A. Nikoubashman, and J. C. Palmer. Modeling hydrodynamic interactions in soft materials with multiparticle collision dynamics. Curr. Opin. Chem. Eng., Vol. 23, p. 34, 2019.

[4] A. Einstein. Eine neue bestimmung der moleku¨ldimensionen. Ann. Phys., Vol. 324, p. 289, 1906.

[5] A. Einstein. Berichtigung zu meiner arbeit: “eine neue bestimmung der moleku¨ldimensionen”. Ann. Phys., Vol. 339, p. 591, 1911.

[6] W. Kuhn. U¨ ber teilchenform und teilchengro¨sse aus viscosita¨t und stro¨mungsdoppelbrechung. Z. Phys. Chem., Vol. 161A, p. 1, 1932.

[7] W. Kuhn. U¨ ber quantitative deutung der viskosita¨t und stro¨mungsdoppelbrechung von suspensionen. Colloid Polym. Sci., Vol. 62, p. 269, 1933.

[8] M. A. Lauffer. The viscosity of tobacco mosaic virus protein solutions. J. Biol. Chem., Vol. 126, p. 443, 1938.

[9] K. Binder, P. Virnau, and A. Statt. The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior. J. Chem. Phys., Vol. 141, p. 140901, 2014.

[10] J. Eyssautier, D. Frot, and L. Barre´. Structure and dynamic properties of colloidal asphaltene aggregates. Langmuir, Vol. 28, pp. 11997–12004, 2012.

[11] S. Pouralhosseini and J. M. Shaw. Temperature-independent colloidal phase behavior of maya asphaltene + toluene + polystyrene mixtures. Energy Fuels, Vol. 29, pp. 4864–4873, 2015.

[12] M. Laurati, G. Petekidis, N. Koumakis, F. Cardinaux, A. B. Schofield, J. M. Brader, M. Fuchs, and S. U. Egelhaaf. Structure, dynamics, and rheology of colloid-polymer mixtures: From liquids to gels. J. Chem. Phys., Vol. 130, p. 134907, 2009.

[13] N. Koumakis and G. Petekidis. Two step yielding in attractive colloids: Transition from gels to attractive glasses. Soft Matter, Vol. 7, p. 2456, 2011.

[14] W. B. Russel, D. A. Saville, and W. R. Schowalter. Colloidal dispersions. Cambridge Uni- versity Press (Cambridge, UK), 1989.

[15] H. N. W. Lekkerkerker and R. Tuinier. Colloids and the depletion Interaction. Springer Netherlands, 2011.

[16] S. Asakura and F. Oosawa. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys., Vol. 22, p. 1255, 1954.

[17] M. Fuchs and K. S. Schweizer. Structure of colloid-polymer suspensions. J. Phys.: Condens. Matter, Vol. 14, p. R239, 2002.

[18] D. Marzi, C. N. Likos, and B. Capone. Coarse graining of star-polymer-colloid nanocompos- ites. J. Chem. Phys., Vol. 137, p. 014902, 2012.

[19] H. Chen, M. A. Fallah, V. Huck, J. I. Angerer, A. J. Reininger, S. W. Schneider, M. F. Schnei- der, and A. Alexander-Katz. Blood-clotting-inspired reversible polymer-colloid composite assembly in flow. Nat. Commun., Vol. 4, p. 1333, 2013.

[20] R. Dargazany, J. Lin, L. Khalili, M. Itskov, H. Chen, and A. Alexander-Katz. Microme- chanical model for isolated polymer-colloid clusters under tension. Phys. Rev. E, Vol. 94, p. 042501, 2016.

[21] Z. M. Ruggeri. Platelets in atherothrombosis. Nat. Med., Vol. 8, p. 1227, 2002.

[22] Y. Otsubo. Effect of adsorption affinity of polymers on the viscosity behavior of suspensions. J. Colloid Interface Sci., Vol. 204, p. 214, 1998.

[23] M. Kamibayashi, H. Ogura, and Y. Otsubo. Shear-thickening flow of nanoparticle suspen- sions flocculated by polymer bridging. J. Colloid Interface Sci., Vol. 321, p. 294, 2008.

[24] B. P. Amar and I. Kretzschmar. Fabrication, Assembly, and Application of Patchy Particles. Macromol. Rapid Commun., Vol. 31, pp. 150–168, 2010.

[25] G. Doppelbauer, G. N. Eva, E. Bianchi, and G. Kahl. Self-assembly scenarios of patchy colloidal particles. Soft Matter, Vol. 8, pp. 7768–7772, 2012.

[26] Z. Zhang and C. G. Sharon. Self-assembly of patchy particles. Nano Lett., Vol. 4, pp. 1407– 1413, 2004.

[27] Q. Chen, S. C. Bae, and S. Granick. Directed self-assembly of a colloidal kagome lattice. Nature, Vol. 469, pp. 381–384, 2011.

[28] Q. Chen, J. K. Whitmer, S. Jiang, S. C. Bae, E. Luijten, and S. Granick. Supracolloidal reaction kinetics of Janus spheres. Science, Vol. 6014, pp. 199–202, 2011.

[29] J. B. Fan, H. Liu, Y. Song, Z. Luo, Z. Lu, and S. Wang. Janus particles synthesis by emulsion interfacial polymerization: Polystyrene as seed or beyond? Macromolecules, Vol. 51, pp. 1591–1597, 2018.

[30] F. Sciortino, A. Giacometti, and G. Pastore. Phase diagram of Janus particles. Phys. Rev. Lett., Vol. 103, p. 237801, 2009.

[31] F. Romano and F. Sciortino. Two dimensional assembly of triblock Janus particles into crystal phases in the two bond per patch limit. Soft Matter, Vol. 7, pp. 5799–5804, 2011.

[32] F. Romano and F. Sciortino. Patterning symmetry in the rational design of colloidal crystals. Nat. Commun., Vol. 3, p. 975, 2012.

[33] Z.-W. Li, Z.-Y. Lu, Z.-Y. Sun, and L.-J. An. Model, self-assembly structures, and phase diagram of soft Janus particles. Soft Matter, Vol. 8, p. 6693, 2012.

[34] G. Rosenthal, K. E. Gubbins, and S. H. L. Klapp. Self-assembly of model amphiphilic Janus particles. J. Chem. Phys., Vol. 136, p. 174901, 2012.

[35] X. Mao, Q. Chen, and S. Granick. Entropy favours open colloidal lattices. Nat. Mater., Vol. 12, pp. 217–222, 2013.

[36] Z. Preisler, T. Vissers, F. Smallenburg, Munao`, and F. Sciortino. Phase diagram of one-patch colloids forming tubes and lamellae. J. Phys. Chem. B, Vol. 117, p. 9540, 2013.

[37] Z. Preisler, T. Vissers, Munao`, F. Smallenburg, and F. Sciortino. Equilibrium phases of one- patch colloids with short-range attractions. Soft Matter, Vol. 10, p. 5121, 2014.

[38] Q.-Z. Zou, Z.-W. Li, Z.-Y. Lu, and Z.-Y. Sun. Supracolloidal helices from soft Janus particles by tuning particle softness. Nanoscale, Vol. 8, p. 4070, 2016.

[39] J. S. Oh, S. Lee, S. C. Glotzer, G. R. Yi, and D. J. Pine. Colloidal fibers and rings by cooperative assembly. Nat. Commun., Vol. 10, p. 3936, 2019.

[40] S. A. Mallory and A. Cacciuto. Activity-enhanced self-assembly of a colloidal kagome lat- tice. J. Am. Chem. Soc., Vol. 141, pp. 2500–2507, 2019.

[41] Z. Huang, G. Zhu, P. Chen, C. Hou, and L.-T. Yan. Plastic crystal-to-crystal transition of Janus particles under shear. Phys. Rev. Lett., Vol. 122, p. 198002, 2019.

[42] Z.-W. Li, Y.-W.. Sun, Y.-H. Wang, Y.-L. Zhu, Z.-Y. Lu, and Z.-Y. Sun. Kinetics-controlled design principles for two-dimensional open lattices using atom-mimicking patchy particles. Nanoscale, Vol. 12, pp. 4544–4551, 2020.

[43] H. Wang, Y. Liu, Z. Chen, L. Sun, and Y. Zhao. Anisotropic structural color particles from colloidal phase separation. Sci. Adv., Vol. 6, p. eaay1438, 2020.

[44] Q. He, K. H. Ku, H. Vijayamohanan, B. J. Kim, and T. M. Swager. Switchable full-color reflective photonic ellipsoidal particles. J. Am. Chem. Soc., Vol. 142, pp. 10424–10430, 2020.

[45] L.-T.-C. Tran, S. Lesieur, and V. Faivre. Janus nanoparticles: Materials, preparation and recent advances in drug delivery. Expert Opin. Drug Deliv., Vol. 11, p. 1061, 2014.

[46] H. Cao, Y. Yang, X. Chena, and Z. Shao. Intelligent janus nanoparticles for intracellular real-time monitoring of dual drug release. Nanoscale, Vol. 8, pp. 6754–6760, 2016.

[47] J. Qin, Z. Li, and B. Song. Bioinspired design of amphiphilic particles with tailored com- partments for dual-drug controlled release. J. Mater. Chem. B, Vol. 8, pp. 1682–1691, 2020.

[48] P. Zhao, J. George, B. Li, N. Amini, J. Paluh, and J. Wang. Clickable multifunctional dumb- bell particles for in situ multiplex single-cell cytokine detection. ACS Appl. Mater. Interfaces, Vol. 9, pp. 32482–32488, 2017.

[49] R. Kadam, M. Zilli, M. Maas, and K. Rezwan. Nanoscale janus particles with dual protein functionalization. Part. Part. Syst. Charact., Vol. 35, p. 1700332, 2018.

[50] N. Glaser, D. J. Adams, A. Bo¨ker, and G. Krausch. Janus particles at liquid-liquid interfaces. Langmuir, Vol. 22, p. 5227, 2006.

[51] A. Kumar, B. J. Park, Tu F., and D. Lee. Amphiphilic janus particles at fluid interfaces. Soft Matter, Vol. 9, p. 6604, 2013.

[52] X. C. Luu, J. Yu, and A. Striolo. Ellipsoidal janus nanoparticles adsorbed at the water–oil interface: Some evidence of emergent behavior. J. Phys. Chem. B, Vol. 117, No. 44, pp. 13922–13929, 2013.

[53] F. Tu and D. Lee. Shape-changing and amphiphilicity-reversing janus particles with ph- responsive surfactant properties. J. Am. Chem. Soc., Vol. 136, p. 9999, 2014.

[54] X. C. Luu and A. Striolo. Ellipsoidal janus nanoparticles assembled at spherical oil/water interfaces. J. Phys. Chem. B, Vol. 118, No. 47, pp. 13737–13743, 2014.

[55] D. Wang, Y. L. Zhu, Y. Zhao, C. Y. Li, A. Mukhopadhyay, Z. Y. Sun, K. Koynov, and H. J. Butt. Brownian diffusion of individual janus nanoparticles at water/oil interfaces. ACS Nano, Vol. 14, No. 8, pp. 10095–10103, 2020.

[56] P.-G. de Gennes. Soft matter (nobel lecture). Angewandte Chemie International Edition in English, Vol. 31, pp. 842–845, 1992.

[57] S. C. Glotzer and M. J. Solomon. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater., Vol. 6, p. 557, 2007.

[58] L. Onsager. The effects of shape on the interaction of colloidal particles. Ann. N. Y. Acad. Sci., Vol. 51, p. 627, 1949.

[59] A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel. Evidence for smectic order in a fluid of hard parallel spherocylinders. Phys. Rev. Lett., Vol. 57, p. 1452, 1986.

[60] A. Stroobants, H. N. W. Lekkerkerker, and D. Frenkel. Evidence for one-, two-, and three- dimensional order in a system of hard parallel spherocylinders. Phys. Rev. A, Vol. 36, p. 2929, 1987.

[61] S. C. McGrother, D. C. Williamson, and G. Jackson. A re–examination of the phase diagram of hard spherocylinders. J. Chem. Phys., Vol. 104, p. 6755, 1996.

[62] N. Malikova, I. Pastoriza-Santos, M. Schiehorn, N. A. Kotov, and L. M. Liz-Maran. Layer- by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir, Vol. 18, p. 3694, 2002.

[63] E. C. Greyson, J. E. Barton, and T. W. Odom. Tetrahedral zinc blende tin sulfide nano- and microcrystals. Small, Vol. 2, p. 368, 2006.

[64] S.-M. Lee, Y. Jun, S.-N. Cho, and J. Cheon. Single-crystalline star-shaped nanocrystals and their evolution: Programming the geometry of nano-building blocks. J. Am. Chem. Soc., Vol. 124, p. 11244, 2002.

[65] Y. Liu, W. Li, J. D. Gunton, and G. Brett. Self assembly of janus ellipsoids. Langmuir, Vol. 28, p. 3, 2012.

[66] W. Li and J. D. Gunton. Self-assembly of janus ellipsoids ii: Janus prolate spheroids. Lang- muir, Vol. 29, p. 8517, 2013.

[67] E. Bianchi, A. Z. Panagiotopoulos, and A. Nikoubashman. Self-assembly of janus particles under shear. Soft Matter, Vol. 11, p. 3767, 2015.

[68] A. Nikoubashman, E. Bianchi, and A. Z. Panagiotopoulos. Correction: Self-assembly of janus particles under shear. Soft Matter, Vol. 11, p. 3946, 2015.

[69] R. A. DeLaCruz-Araujo, D. J. Beltran-Villegas, R. G. Larson, and U. M. Co´rdova-Figueroa. Rich janus colloid phase behavior under steady shear. Soft Matter, Vol. 12, p. 4071, 2016.

[70] P. Huang, Z. Chen, Y. Yang, and Li-Tang. Yan. Shearing janus nanoparticles confined in two-dimensional space: Reshaped cluster configurations and defined assembling kinetics. J. Phys. Chem. Lett., Vol. 7, pp. 1966–1971, 2016.

[71] Y. Kobayashi and N. Arai. Self-assembly of janus nanoparticles with a hydrophobic hemi- sphere in nanotubes. Soft Matter, Vol. 12, p. 378, 2015.

[72] Y. Kobayashi and N. Arai. Self-assembly and viscosity behavior of janus nanoparticles in nanotube flow. Langmuir, Vol. 33, p. 736, 2017.

[73] A. Nikoubashman. Self-assembly of colloidal micelles in microfluidic channels. Soft Matter, Vol. 13, p. 222, 2017.

[74] Q. Li, L. Wang, and J. Lin. Co-assembly behaviour of janus nanoparticles and amphiphilic block copolymers in dilute solution. Phys. Chem. Chem. Phys., Vol. 19, pp. 24135–24145, 2017.

[75] J. Li, Q. Wang, J. Yao, K. Yu, Y. Yan, and J. Zhang. Cooperative assembly of janus particles and amphiphilic oligomers: the role of janus balance. Nanoscale, Vol. 11, pp. 7221–7228, 2019.

[76] J. Li, J. Wang, Q. Yao, Z. Yan, Y. Li, and J. Zhang. Manipulating hybrid nanostructures by the cooperative assembly of amphiphilic oligomers and triblock janus nanoparticles. J. Phys. Chem. Lett., Vol. 11, pp. 3369–3375, 2020.

[77] B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. J. Chem. Phys., Vol. 27, p. 1208, 1957.

[78] A. Rahman and F. H. Stillinger. Molecular dynamics study of liquid water. J. Chem. Phys., Vol. 55, p. 3336, 1971.

[79] J. A. McCammon, B. R. Glein, and M. Karplus. Dynamics of folded proteins. Nature, Vol. 267, p. 585, 1977.

[80] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-stokes equation. Phys. Rev. Lett., Vol. 56, pp. 1505–1508, 1986.

[81] U. Frisch, D.d'Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex systems, Vol. 1, pp. 649–707, 1987.

[82] P. J. Hoogerbrugge and P. M. V. A. Koelman. Simulating microscopic hydrodynamics phe- nomena with dissipative particle dynamics. Europhys. Lett., Vol. 19, pp. 155–160, 1992.

[83] P. Espano˜l and P. B. Warren. Statical-mechanics of dissipative particle dynamics. Europhys. Lett., Vol. 30, pp. 191–196, 1995.

[84] P. Espano˜l. Hydrodynamics from dissipative particle dynamics. Phys. Rev. E, Vol. 52, pp. 1734–1742, 1995.

[85] G. R. McNamara and G. Zanetti. Use of the boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett., Vol. 61, pp. 2332–2335, 1988.

[86] X. Shan and H. Chen. Lattice boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E., Vol. 47, pp. 1815–1819, 1993.

[87] X. He and L. S. Luo. Theory of the lattice boltzmann method: From the boltzmann equation to the lattice boltzmann equation. Phys. Rev. E., Vol. 56, pp. 6811–6817, 1997.

[88] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford Univ. Press, 2001.

[89] A. Malevanets and R. Kapral. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys., Vol. 112, pp. 7260–7269, 2000.

[90] G. A. Bird. The velocity distribution function within a shock wave. J. Fluid Mech., Vol. 30, pp. 479–487, 1967.

[91] G. A. Bird. Molecular Gas Dynamics. Oxford Univ. Press, 1976.

[92] E. S. Boek, A. D. Wilson, J. T. Padding, T. F. Headen, and J. P. Crawshaw. Multi-scale simulation and experimental studies of asphaltene aggregation and deposition in capillary flow. Energy Fuels, Vol. 24, pp. 2361–2368, 2010.

[93] D. Zablotsky, E. Blumsb, and H. J. Herrmanna. Self-assembly and rheology of dipolar col- loids in simple shear studied using multi-particle collision dynamics. Soft Matter, Vol. 13, p. 6474, 2017.

[94] M. Han, J. K. Whitmer, and E. Luijten. Dynamics and structure of colloidal aggregates under microchannel flow. Soft Matter, Vol. 15, pp. 744–751, 2019.

[95] S. Das and A. Cacciuto. Colloidal swimmers near curved and structured walls. Soft Matter, Vol. 15, pp. 8290–8301, 2019.

[96] C.-C. Huang, R. G. Winkler, G. Sutmann, and G. Gompper. Semidilute polymer solutions at equilibrium and under shear flow. Macromolecules, Vol. 43, p. 10107, 2010.

[97] J. S. Myung, F. Taslimi, R. G. Winkler, and Gompper G. Self-organized structures of at- tractive end-functionalized semiflexible polymer suspensions. Macromolecules, Vol. 47, pp. 4118–4125, 2014.

[98] A. Nikoubashman and M. P. Howard. Equilibrium dynamics and shear rheology of semiflex- ible polymers in solution. Macromolecules, Vol. 50, p. 8279, 2017.

[99] X. Kong, Y. Han, W. Chen, F. Cui, and Y. Li. Understanding conformational and dynamical evolution of semiflexible polymers in shear flow. Soft Matter, Vol. 15, pp. 6353–6361, 2019.

[100] M. Liebetreu and C. N. Likos. Hydrodynamic inflation of ring polymers under shear. Comms. Mater., Vol. 1, pp. 1–11, 2020.

[101] E. Moghimi, I. Chubak, A. Statt, M. P. Howard, D. Founta, G. Polymeropoulos, K. Ntet- sikas, N. Hadjichristidis, A. Z. Panagiotopoulos, C. N. Likos, and D. Vlassopoulos. Self- organization and flow of low-functionality telechelic star polymers with varying attraction. ACS Macro Lett., Vol. 8, pp. 766–772, 2019.

[102] I. C. Garlea, D. Jaramillo-Cano, and C. N. Likos. Self-organization of gel networks formed by block copolymer stars. Soft Matter, Vol. 15, p. 3527, 2019.

[103] D. Jaramillo-Cano, M. Camargo, C. N. Likos, and I. C. Garˆrlea. Dynamical properties of concentrated suspensions of block copolymer stars in shear flow. Macromolecules, Vol. 53, pp. 10015–10027, 2020.

[104] J. Hu, M. Yang, G. Gompper, and R. G. Winkler. Modelling the mechanics and hydrodynam- ics of swimming e. coli. Soft Matter, Vol. 11, pp. 7867–7876, 2015.

[105] N. Narinder, J. R. Gomez-Solano, and C. Bechinger. Active particles in geometrically con- fined viscoelastic fluids. New J. Phys., Vol. 21, p. 093058, 2019.

[106] A. Zo¨ttl and J. M. Yeomans. Enhanced bacterial swimming speeds in macromolecular poly- mer solutions. Nat. Phys., Vol. 15, pp. 554–558, 2019.

[107] T. N. Shendruk and J. M. Yeomans. Multi-particle collision dynamics algorithm for nematic fluids. Soft Matter, Vol. 11, pp. 5101–5110, 2015.

[108] S. Mandal and M. G. Mazza. Multiparticle collision dynamics for tensorial nematodynamics. Phys. Rev. E, Vol. 99, p. 063319, 2019.

[109] C.-C. Huang, G. Gompper, and R. G. Winkler. Hydrodynamic correlations in multiparticle collision dynamics fluids. Phys. Rev. E, Vol. 86, p. 056711, 2012.

[110] V. Dahirel, X. Zhao, B. Couet, G. Batoˆt, and M. Jardat. Hydrodynamic interactions between solutes in multiparticle collision dynamics. Phys. Rev. E, Vol. 98, p. 053301, 2018.

[111] C.-C. Huang, A. Chatterji, G. Sutmann, Gompper G., and Winkler R. G. Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations. J. Comput. Phys., Vol. 229, p. 168, 2010.

[112] G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys., Vol. 126, p. 014101, 2007.

[113] T. Ihle and D. M. Kroll. Stochastic rotation dynamics: A galilean-invariant mesoscopic model for fluid flow. Phys. Rev. E, Vol. 63, p. 020201, 2001.

[114] J. T. Padding and A. A. Louis. Hydrodynamic interactions and brownian forces in colloidal suspensions: Coarse-graining over time and length scales. Phys. Rev. E, Vol. 74, p. 031402, 2006.

[115] A. Malevanets and J. M. Yeomans. Dynamics of short polymer chains in solution. Europhys. Lett., Vol. 52, pp. 231–237, 2000.

[116] K. Mussawisade, M. Ripoll, R. G. Winkler, and G. Gompper. Dynamics of polymers in a particle-based mesoscopic solvent. Europhys. Lett., Vol. 123, p. 144905, 2005.

[117] M. Ripoll, R. G. Winkler, and G. Gompper. Star polymers in shear flow. Phys. Rev. Lett., Vol. 96, p. 188302, 2006.

[118] A. Nikoubashman and C. N. Likos. Branched polymers under shear. Macromolecules, Vol. 43, pp. 1610–1620, 2010.

[119] A. Nikoubashman, G. Kahl, and C. N. Likos. Cluster crystals under shear. Phys. Rev. Lett., Vol. 107, p. 068302, 2011.

[120] M. Daoud, J. P. Cotton, B. Farnoux, G. Jannink, G. Sarma, H. Benoit, C. Duplessix, C. Picot, and P. G. De Gennes. Solutions of flexible polymers. neutron experiments and interpretation. Macromolecules, Vol. 8, p. 804, 1975.

[121] C. Stoltz, J. J. de Pablo, and M. D. Graham. Concentration dependence of shear and exten- sional rheology of polymer solutions: Brownian dynamics simulations. J. Rheol., Vol. 50, p. 137, 2005.

[122] A. J. Pelissetto. Osmotic pressure and polymer size in semidilute polymer solutions under good-solvent conditions. J. Chem. Phys., Vol. 129, p. 044901, 2008.

[123] S. Poblete, A. Wysocki, G. Gompper, and Winkler R. G. Hydrodynamics of discrete–particle models of spherical colloids: a multiparticle collision dynamics simulation study. Phys. Rev. E, Vol. 90, p. 033314, 2014.

[124] Q. Chen, S. C. Bae, and S. Granick. Directed self–assembly of a colloidal kagome lattice. Nature, Vol. 469, pp. 381–384, 2011.

[125] J. D. Weeks, D. Chandler, and Andersen R. G. Roles of repulsive and attractive forces in liquids: The optimized random phase approximation. J. Chem. Phys., Vol. 56, p. 3812, 1972.

[126] Z. Nie, D. Fava, E. Kumacheva, S. Zou, G. C. Walker, and M. Rubinstein. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat. Mater., Vol. 6, pp. 609–614, 2007.

[127] S. H. R. Lee, H.-Y.and Shin, A. M. Drews, A. M. Chirsan, S. A. Lewis, and K. J. M. Bishop. Self-assembly of nanoparticle amphiphiles with adaptive surface chemistry. ACS Nano, Vol. 8, pp. 9979–9987, 2014.

[128] M. A. B. Taniguchi, Y. Sazali, Y. Kobayashi, N. Arai, T. Kawai, and T. Nakashima. Pro- grammed self-assembly of branched nanocrystals with an amphiphilic surface pattern. ACS Nano, Vol. 11, pp. 9979–9987, 2017.

[129] N. B. Bowden, M. Weck, I. S. Choi, and G. M. Whitesides. Molecule-mimetic chemistry and mesoscale self-assembly. Acc. Chem. Res., Vol. 34, pp. 231–238, 2001.

[130] S. Jiang and S. Granick. Controlling the geometry (janus balance) of amphiphilic colloidal particles. Langmuir, Vol. 24, pp. 2438–2445, 2008.

[131] T. M. Ruhland, H. S. McKenzie, T. S. Skelhon, S. A. F. Bon, A. Walther, and A. H. E. Mu¨ller. Nanoscale hybrid silica/polymer janus particles with a double-responsive hemicorona. Poly- mer, Vol. 79, pp. 299–308, 2015.

[132] A. H. Gro¨schel, A. Walther, T. I. Lo¨bling, F. H. Schacher, H. Schmalz, and A. H. E. Mu¨ller. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature, Vol. 503, pp. 247–251, 2013.

[133] C. Kang and A. Honciuc. Influence of geometries on the assembly of snowman-shaped janus nanoparticles. ACS Nano, Vol. 12, pp. 3741–3750, 2018.

[134] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, USA, 1989.

[135] J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular dynamics sim- ulations fully implemented on graphics processing units. J. Comput. Phys., Vol. 227, pp. 5342–5359, 2008.

[136] J. Glaser, T. D. Nguyen, J. A. Anderson, P. Liu, F. Spiga, J. A. Millan, D. C. Morse, , and S. C. Glotzer. Strong scaling of general-purpose molecular dynamics simulations on gpus. Comput. Phys. Commun., Vol. 192, pp. 97–107, 2015.

[137] M. P. Howard, A. Z. Panagiotopoulos, and A. Nikoubashman. Efficient mesoscale hydrody- namics: Multiparticle collision dynamics with massively parallel gpu acceleration. Comput. Phys. Commun., Vol. 230, pp. 10–20, 2018.

[138] https://github.com/mphoward/azplugins.

[139] T. Ihle and D. M. Kroll. Stochastic rotation dynamics. i. formalism, galilean invariance, and green–kubo relations. Phys. Rev. E, Vol. 67, p. 066706, 2003.

[140] I.-C. Yeh and G. Hummer. System–size dependence of diffusion coefficients and viscosities from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem. B, Vol. 108, p. 15873, 2004.

[141] M. M. Tirado and J. G. de la Torre. Translational friction coefficients of rigid, symmetric top macromolecules. application to circular cylinders. J. Chem. Phys., Vol. 71, p. 2581, 1979.

[142] M. M. Tirado and J. G. de la Torre. Rotational dynamics of rigid, symmetric top macro- molecules. application to circular cylinders. J. Chem. Phys., Vol. 73, p. 1986, 1980.

[143] M. M. Tirado, C. L. Mart´ınez, and G. de la Torre. Comparison of theories for the translational and rotational diffusion coefficients of rod - like macromolecules. application to short dna fragments. J. Chem. Phys., Vol. 81, p. 2047, 1984.

[144] W. Miller and A. Cacciuto. Hierarchical self–assembly of asymmetric amphiphatic spherical colloidal particles. Phys. Rev. E, Vol. 80, p. 021404, 2009.

[145] M. Ester, H-P. Kriegel, J. Sander, and X. Xu. A density–based algorithm for discovering clusters in large spatial databases with noise. Proc. Second Int. Conf. Knowl. Discov. Data Min., Vol. 96, p. 226, 1996.

[146] J. N. Israelachvili. Intermolecular and Surface Forces. Academic Press, 2011.

[147] Y. Kobayashi and N. Arai. Self–assembly of surfactant aqueous solution confined in a janus amphiphilic nanotube. Mol. Simul., Vol. 43, pp. 1153–1159, 2017.

[148] F. Mu¨ller-Plathe. Reversing the perturbation in nonequilibrium molecular dynamics: An easy way to calculate the shear viscosity of fluid. Phys. Rev. E., Vol. 59, pp. 4894–4898, 1999.

[149] Y. Kobayashi and N. Arai. Predominant factor determining thermal conductivity behavior of nanofluid: Effect of cluster structures with various nanoparticles. J. Electrochem. Soc., Vol. 166, pp. B3223–B3227, 2019.

[150] P. D. Godfrin, I. E. Zarraga, J. Zarzar, L. Porcar, P. Falus, N. J. Wagner, and Y. Liu. Ef- fect of hierarchical cluster formation on the viscosity of concentrated monoclonal antibody formulations studied by neutron scattering. J. Phys. Chem. B, Vol. 120, p. 278, 2016.

[151] Z. Zhang and Y. Liu. Recent progresses of understanding the viscosity of concentrated protein solutions. Curr. Opin. Chem. Eng., Vol. 16, p. 48, 2017.

[152] Y. Kobayashi, N. Arai, and A. Nikoubashman. Structure and dynamics of amphiphilic janus spheres and spherocylinders under shear. Soft Matter, Vol. 16, pp. 476–486, 2020.

[153] M. Bishop, M. H. Kalos, and H. L. Frisch. Molecular dynamics of polymeric systems. J. Chem. Phys., Vol. 70, pp. 1299–1304, 1979.

[154] G. S. Grest and K. Kremer. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A, Vol. 33, pp. 3628–3631, 1986.

[155] Y. Kobayashi, K. Nomura, T. Kaneko, and N. Arai. Replica exchange dissipative particle dy- namics method on threadlike micellar aqueous solutions. J. Phys.: Condens. Matter, Vol. 32, p. 115901, 2019.

[156] T. I. Morozova and A. Nikoubashman. Surface activity of soft polymer colloids. Langmuir, Vol. 35, p. 16907, 2019.

[157] B. Riedl, M. J. Vohl, and L. Calve`. Molecular size and solvation of low molecular weight poly(ethylene oxide) and phenol-formaldehyde resols in different solvents. J. Appl. Polym. Sci., Vol. 39, pp. 341–353, 1990.

[158] B. Riedl, M. J. Vohl, and L. Calve`. Low molecular weight poly(ethylene oxide) and phenol- formaldehyde resols in different solvents. J. Appl. Polym. Sci., Vol. 39, pp. 341–353, 1990.

[159] N. Razza, M. Castellino, and M. Sangermano. Fabrication of janus particles via a “photografting-from” method and gold photoreduction. J. Mater. Sci., Vol. 52, pp. 13444– 13454, 2017.

[160] M. Xu, J. Liu, X. Xu, S. Liu, F. Peterka, Y. Ren, and X. Zhu. Fabrication of janus particles via a “photografting-from” method and gold photoreduction. Materials, Vol. 11, p. 1787, 2018.

[161] L. Sanchez, Y. Yi, and Y. Yu. Effect of partial pegylation on particle uptake by macrophages. Nanoscale, Vol. 9, pp. 288–297, 2017.

[162] B. Wang, B. Li, B. Zhao, and C. Y. Li. Amphiphilic janus gold nanoparticles via combining “solid-state grafting-to” and “grafting-from” methods. J. Am. Chem. Soc., Vol. 130, pp. 11594–11595, 2008.

[163] H. Kim, R. P. Carney, J. Reguera, Q. K. Ong, X. Liu, and F. Stellacci. Synthesis and charac- terization of janus gold nanoparticles. Adv. Mater., Vol. 24, pp. 3857–3863, 2012.

[164] R. Iida, H. Kawamura, K. Niikura, T. Kimura, S. Sekiguchi, Y. Joti, Y. Bessho, H. Mit- omo, Y. Nishino, and K. Ijiro. Synthesis of janus-like gold nanoparticles with hy- drophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water. Langmuir, Vol. 31, pp. 4054–4062, 2015.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る