リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Coronal Density Measurements Using Giant Radio Pulses of the Crab Pulsar at the Cycle 24/25 Minimum」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Coronal Density Measurements Using Giant Radio Pulses of the Crab Pulsar at the Cycle 24/25 Minimum

Tokumaru, Munetoshi Maeda, Ryuya Tawara, Kaito Takefuji, Kazuhiro Terasawa, Toshio 名古屋大学

2022.01.17

概要

Accurate measurements of the coronal plasma density profile, which varies with the solar cycle (SC), are necessary to elucidate the solar wind acceleration. In this study, the Crab pulsar is observed using the 327 MHz radio telescope at the Toyokawa Observatory of the Institute for Space-Earth Environmental Research of Nagoya University to investigate the coronal plasma density profile for radial distances between 5 and 60 solar radii at the SC24/25 minimum. We derive the dispersion measures (DMs) that represent the integration of plasma density along the line of sight (LOS) for giant radio pulses of the Crab pulsar. We find that the observed DMs increased above the interstellar background level when the LOS for the Crab pulsar approached the Sun in mid-June 2018 and 2019. This increase in DM is attributed to the effect of the coronal plasma. We determine the plasma density distribution by fitting a spherically symmetric model to the observed DM data. The flat radial slopes of the best-fit model are consistent with pulsar observations in the low-activity periods of past SCs, and they are attributed to the effect of the coronal hole over the south pole of the Sun. Our results show that the density level near the Sun is similar to those observed in the low activity periods of past SCs, implying recovery of the coronal plasma density from a significant reduction at the SC23/24 minimum.

この論文で使われている画像

参考文献

Allen, C.W.: 1947, Mon. Not. Roy. Astron. Soc. 107, 426. DOI.

Bird, M.K., Volland, H., Paetzold, M., Edenhofer, P., Asmar, S.W., Brenkle, J.P.: 1994, Astrophys. J. 426, 373. DOI.

Bisoi, S.K., Janardhan, P., Ingale, M., Subramanian, P., Ananthakrishnan, S., Tokumaru, M., et al.: 2014, Astrophys. J. 795, 69. DOI.

Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., et al.: 1995, Solar Phys. 162, 357. DOI.

Cognard, I., Bourgois, G., Lestrade, J.-F., Biraud, F., Aubry, D., Darchy, B., et al.: 1996, Astron. Astrophys. 311, 179.

Counselman, C.C., Rankin, J.M.: 1972, Astrophys. J. 175, 843. DOI. Counselman, C.C., Rankin, J.M.: 1973, Astrophys. J. 185, 357. DOI.

Edenhofer, P., Esposito, P.B., Hansen, R.T., Hansen, S.F., Lüneburg, E., Martin, W.L., et al.: 1977, J. Geophys. 42, 673.

Esposito, P.B., Edenhofer, P., Lueneburg, E.: 1980, J. Geophys. Res. 85, 3414. DOI.

Fox, N.J., Velli, M.C., Bale, S.D., Decker, R., Driesman, A., Howard, R.A., et al.: 2016, Space Sci. Rev. 204, 7. DOI.

Heiles, C., Campbell, D.B.: 1970, Nature 226, 529. DOI.

Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K.: 2011, Geophys. Res. Lett. 38, L20108. DOI.

Janardhan, P., Bisoi, S.K., Ananthakrishnan, S., Tokumaru, M., Fujiki, K., Jose, L., et al.: 2015, J. Geophys. Res. 120, 5306. DOI.

Leblanc, Y., Dulk, G.A., Bougeret, J.-L.: 1998, Solar Phys. 183, 165. DOI.

Lyne, A.G., Pritchard, R.S., Graham Smith, F.: 1993, Mon. Not. Roy. Astron. Soc. 265, 1003. DOI. Mancuso, S., Garzelli, M.V.: 2013, Astron. Astrophys. 560, L1. DOI.

McComas, D.J., Ebert, R.W., Elliott, H.A., Goldstein, B.E., Gosling, J.T., Schwadron, N.A., et al.: 2008, Geophys. Res. Lett. 35, L18103. DOI.

McComas, D.J., Angold, N., Elliott, H.A., Livadiotis, G., Schwadron, N.A., Skoug, R.M., et al.: 2013, Astro- phys. J. 779, 2. DOI.

McComas, D.J., Bzowski, M., Dayeh, M.A., DeMajistre, R., Funsten, H.O., Janzen, P.H., et al.: 2020, Astron. Astrophys. Suppl. Ser. 248, 26. DOI.

Mercier, C., Chambe, G.: 2015, Astron. Astrophys. 583, A101. DOI. Muhleman, D.O., Anderson, J.D.: 1981, Astrophys. J. 247, 1093. DOI.

Muhleman, D.O., Esposito, P.B., Anderson, J.D.: 1977, Astrophys. J. 211, 943. DOI.

Müller, D., St. Cyr, O.C., Zouganelis, I., Gilbert, H.R., Marsden, R., Nieves-Chinchilla, T., et al.: 2020, Astron. Astrophys. 642, A1. DOI. Newkirk, G.: 1961, Astrophys. J. 133, 983. DOI.

Saito, K., Poland, A.I., Munro, R.H.: 1977, Solar Phys. 55, 121. DOI.

Sasikumar Raja, K., Janardhan, P., Bisoi, S.K., Ingale, M., Subramanian, P., Fujiki, K., et al.: 2019, Solar Phys. 294, 123. DOI.

Shimojo, M., Iwai, K., Asai, A., Nozawa, S., Minamidani, T., Saito, M.: 2017, Astrophys. J. 848, 62. DOI. Smirnova, T.V., Chashei, I.V., Shishov, V.I.: 2009, Astron. Rep. 53, 252. DOI.

Staelin, D.H.: 1970, Nature 226, 69. DOI.

Staelin, D.H., Reifenstein, E.C.: 1968, Science 162, 1481. DOI.

Stelzried, C.T., Levy, G.S., Sato, T., Rusch, W.V.T., Ohlson, J.E., Schatten, K.H., et al.: 1970, Solar Phys. 14, 440. DOI.

Tiburzi, C., Shaifullah, G.M., Bassa, C.G., Zucca, P., Verbiest, J.P.W., Porayko, N.K., et al.: 2021, Astron. Astrophys. 647, A84. DOI.

Tokumaru, M., Kojima, M., Fujiki, K., Maruyama, K., Maruyama, Y., Ito, H., et al.: 2011, Radio Sci. 46, RS0F02. DOI.

Tokumaru, M., Tawara, K., Takefuji, K., Sekido, M., Terasawa, T.: 2020, Solar Phys. 295, 80. DOI. Tyler, G.L., Brenkle, J.P., Komarek, T.A., Zygielbaum, A.I.: 1977, J. Geophys. Res. 82, 4335. DOI. Weisberg, J.M., Rankin, J.M., Payne, R.R., Counselman, C.C.: 1976, Astrophys. J. 209, 252. DOI.

Wexler, D.B., Hollweg, J.V., Efimov, A.I., Song, P., Jensen, E.A., Lionello, R., et al.: 2019a, J. Geophys. Res. 124, 7761. DOI.

Wexler, D.B., Hollweg, J.V., Efimov, A.I., Lukanina, L.A., Coster, A.J., Vierinen, J., et al.: 2019b, Astrophys. J. 871, 202. DOI.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る