リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of precursor deficiency sites for borate incorporation on the structural and biological properties of boronated hydroxyapatite」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of precursor deficiency sites for borate incorporation on the structural and biological properties of boronated hydroxyapatite

Gokcekaya, Ozkan 大阪大学

2022.10.20

概要

The biological properties of hydroxyapatite (HA) are significantly influenced by its compositional characteristics especially doping elements and/or Ca/P ratio, which can be altered by precursor chemistry. In this study, a group of boronated (B-incorporated) hydroxyapatite (BHA) was synthesized using a precipitation method by setting the Ca/P ratio to the stoichiometric value of HA (1.67), while altering the precursor chemistry by adjusting either (Ca + B)/P (Ca-deficient precursor, BC) or Ca/(P + B) (P-deficient precursor, BP). After heat-treatment, the partial decomposition of the BC was observed, forming tricalcium phosphate as the byproduct, however, the BP showed phase stability at all temperatures. The B-ionic species in the form of (BO₂)⁻ and (BO₃)³⁻ were incorporated into the HA structure at the (PO₄)³⁻ and (OH)⁻ positions, respectively. The incorporation of the B species also facilitated the incorporation of (CO₃)²⁻ groups specifically in the BPs. This is the first finding on BHA reporting that preferential (CO₃)²⁻ incorporation depends on the precursor chemistry used. As a result, osteoblast adhesion was superior on the BPs compared to pure HA owing to the carbonated structure, increasing cell spreading area. As such, this in vitro study highlighted that the present P-deficient precursor approach for synthesizing BHA improved biocompatibility properties and should, thus, be further considered for the next-generation of improved orthopedic applications.

参考文献

[1] M.J. Dalby, L. Di Silvio, E.J. Harper, W. Bonfield, Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement, Biomaterials 22 (2001) 1739–1747, https://doi.org/10.1016/S0142-9612(00) 00334-3.

[2] J.C. Elliott, Structure and Chemistry of the Apatites Acnd Other Calcium Orthophosphates, Elsevier Science, 2013.

[3] M. supova, Substituted hydroxyapatites for biomedical applications: a review, Ceram. Int. 41 (2015) 9203–9231, https://doi.org/10.1016/j. ceramint.2015.03.316.

[4] T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, E.B. Slamovich, Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials 25 (2004) 2111–2121, https://doi.org/10.1016/j.biomaterials.2003.09.001.

[5] O. Gokcekaya, K. Ueda, K. Ogasawara, H. Kanetaka, T. Narushima, In vitro evaluation of Ag-containing calcium phosphates: effectiveness of Ag-incorporated β-tricalcium phosphate, Mater. Sci. Eng. C 75 (2017) 926–933, hhttps://doi.org/ 10.1016/j.msec.2017.02.059.

[6] V. Stanic, S. Dimitrijevic, J. Antic-Stankovic, M. Mitric, B. Jokic, I.B. Plecas, S. Raicevic, Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders, Appl. Surf. Sci. 256 (2010) 6083–6089.

[7] O. Gokcekaya, T.J. Webster, K. Ueda, T. Narushima, C. Ergun, In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying, Mater. Sci. Eng. C 77 (2017) 556–564, https://doi.org/ 10.1016/j.msec.2017.03.233.

[8] G. Singh, R.P. Singh, S.S. Jolly, Customized hydroxyapatites for bone-tissue engineering and drug delivery applications: a review, J. Sol. Gel Sci. Technol. 94 4 2 2— (2020) 505–530, https://doi.org/10.1007/s10971-020-05222-1. types of boronated HAs. Moreover, the incorporation of CO3 ions into PO3— sites can occur specifically in the BHA synthesized from P- deficient precursors. • A higher amount of B incorporation can occur into the BHAs when synthesized from the P-deficient precursors. • After heat-treatment, the BC was decomposed to tricalcium phos- phate as the byproduct, however, the BP showed a stable HA phase at all temperatures. Both types of BHAs can be highly densified upon heat treatment at 1100 ◦C. • In both types of BHAs, the mean value of osteoblast adhesion improved compared to pure HA. Remarkably, the increase in oste- oblast adhesion (and associated increased osteoblast spreading with a dense network of actin fibers) on the BHAs synthesized from P- deficient precursors was significant at a factor of 180%. This investigation demonstrated that a Ca-deficiency or a P-defi- ciency in the precursor solution has a significant effect on the overall osteoblast adhesion and spreading behavior on BHAs. The osteoblast adhesion behavior on BHA synthesized from P-deficient precursors was shown to be superior to that on pure HA and BHA synthesized from Ca- deficient precursors. These results indicated that the P-deficiency approach in the precursor solution, with its enhanced osteoblast adhe- sion and cell spreading behavior, has great potential as an alternative for improved bone regeneration and should be further studied.

[9] O. Gokcekaya, K. Ueda, T. Narushima, T. Nakano, Using HAADF-STEM for atomic- scale evaluation of incorporation of antibacterial Ag atoms in a β-tricalcium phosphate structure, Nanoscale 12 (2020) 16596–16604, https://doi.org/10.1039/ D0NR04208K.

[10] O. Gokcekaya, K. Ueda, K. Ogasawara, T. Narushima, Antibacterial activity of Ag nanoparticle-containing hydroxyapatite powders in simulated body fluids with Cl ions, Mater. Chem. Phys. 223 (2019) 473–478, https://doi.org/10.1016/j. matchemphys.2018.11.015.

[11] S. Kamonwannasit, C.M. Futalan, P. Khemthong, T. Butburee, A. Karaphun, P. Phatai, Synthesis of copper-silver doped hydroxyapatite via ultrasonic coupled sol-gel techniques: structural and antibacterial studies, J. Sol. Gel Sci. Technol. 96 (2020) 452–463, https://doi.org/10.1007/s10971-020-05407-8.

[12] F. Ai, L. Chen, J. Yan, K. Yang, S. Li, H. Duan, C. Cao, W. Li, K. Zhou, Hydroxyapatite scaffolds containing copper for bone tissue engineering, J. Sol. Gel Sci. Technol. 95 (2020) 168–179, https://doi.org/10.1007/s10971-020-05285-0.

[13] B.-A.-H. Movahedi Najafabadi, M.H. Abnosi, Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells, Cell J 18 (2016) 62–73, https://doi.org/10.22074/cellj.2016.3988.

[14] A. Dogan, S. Demirci, Y. Bayir, Z. Halici, E. Karakus, A. Aydin, E. Cadirci, A. Albayrak, E. Demirci, A. Karaman, A.K. Ayan, C. Gundogdu, F. sahin, Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering, Mater. Sci. Eng. C 44 (2014) 246–253, https://doi.org/10.1016/j. msec.2014.08.035.

[15] M. Dzondo-Gadet, R. Mayap-Nzietchueng, K. Hess, P. Nabet, F. Belleville, B. Dousset, Action of boron at the molecular level, Biol. Trace Elem. Res. 85 (2002) 23–33, https://doi.org/10.1385/BTER:85:1:23.

[16] F.H. Nielsen, Update on human health effects of boron, J. Trace Elem. Med. Biol. 28 (2014) 383–387, https://doi.org/10.1016/j.jtemb.2014.06.023.

[17] X. Li, X. Wang, X. Jiang, M. Yamaguchi, A. Ito, Y. Bando, D. Golberg, Boron nitride nanotube-enhanced osteogenic differentiation of mesenchymal stem cells, J. Biomed. Mater. Res. B Appl. Biomater. 104 (2016) 323–329, https://doi.org/ 10.1002/jbm.b.33391.

[18] S.S. Hakki, B.S. Bozkurt, E.E. Hakki, Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1), J. Trace Elem. Med. Biol. 24 (2010) 243–250, https://doi.org/10.1016/j.jtemb.2010.03.003.

[19] X. Ying, S. Cheng, W. Wang, Z. Lin, Q. Chen, W. Zhang, D. Kou, Y. Shen, X. Cheng, F.A. Rompis, L. Peng, C. zhu Lu, Effect of boron on osteogenic differentiation of human bone marrow stromal cells, Biol. Trace Elem. Res. 144 (2011) 306–315, https://doi.org/10.1007/s12011-011-9094-x.

[20] J. Kolmas, F. Velard, A. Jaguszewska, F. Lemaire, H. Kerdjoudj, S.C. Gangloff, A. Kaflak, Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells, Mater. Sci. Eng. C 79 (2017) 638–646, https://doi.org/10.1016/j. msec.2017.05.066.

[21] R. Ternane, M.T. Cohen-Adad, G. Panczer, C. Goutaudier, N. Kbir-Ariguib, M. Trabelsi-Ayedi, P. Florian, D. Massiot, Introduction of boron in hydroxyapatite: synthesis and structural characterization, J. Alloys Compd. 333 (2002) 62–71, https://doi.org/10.1016/S0925-8388(01)01558-4.

[22] S. Barheine, S. Hayakawa, C. J¨ager, Y. Shirosaki, A. Osaka, Effect of disordered structure of boron-containing calcium phosphates on their in vitro biodegradability, J. Am. Ceram. Soc. 94 (2011) 2656–2662, https://doi.org/ 10.1111/j.1551-2916.2011.04400.x.

[23] E.O. Tuncay, T.T. Demirtas, M. Gumusderelioglu, Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds, J. Trace Elem. Med. Biol. 40 (2017) 72–81, https://doi.org/10.1016/j.jtemb.2016.12.005.

[24] Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, Z. Wu, Boronic acid sensors with double recognition sites: a review, Analyst 145 (2020) 719–744, https://doi.org/ 10.1039/C9AN00741E.

[25] M. Gizer, S. Ko¨se, B. Karaosmanoglu, E.Z. Taskiran, A. Berkkan, M. Timuçin, F. Korkusuz, P. Korkusuz, The effect of boron-containing nano-hydroxyapatite on bone cells, Biol. Trace Elem. Res. 193 (2020) 364–376, https://doi.org/10.1007/ s12011-019-01710-w.

[26] K. Ishikawa, E. Garskaite, A. Kareiva, Sol-gel synthesis of calcium phosphate-based biomaterials-A review of environmentally benign, simple, and effective synthesis routes, J. Sol. Gel Sci. Technol. 94 (2020) 551–572, https://doi.org/10.1007/ s10971-020-05245-8.

[27] L. Guo, B. Li, C. Zhang, Optimization of process parameters for preparation of hydroxyapatite by the sol-gel method, J. Sol. Gel Sci. Technol. 96 (2020) 247–255, https://doi.org/10.1007/s10971-020-05381-1.

[28] O. Gokcekaya, K. Ueda, T. Narushima, Control of Ag Release from Ag-Containing Calcium Phosphates in Simulated Body Fluid, 2015, https://doi.org/10.1002/ 9781119190134.ch2.

[29] O. Gokcekaya, K. Ueda, T. Narushima, K. Ogasawara, H. Kanetaka, In vitro properties of Ag-containing calcium phosphates, Ceram. Eng. Sci. Proc. (2017) 87–93, https://doi.org/10.1002/9781119321682.ch10.

[30] M.S. AlHammad, Nanostructure hydroxyapatite based ceramics by sol gel method, J. Alloys Compd. 661 (2016) 251–256, https://doi.org/10.1016/j. jallcom.2015.11.045.

[31] J. Huang, C. Chen, Z. Huang, C. Wu, Y. Cheng, S. Chen, Study on the growth morphology and induction mechanism of strontium hydroxyapatite controlled by anionic and cationic surfactants, J. Alloys Compd. 835 (2020), 155385, https:// doi.org/10.1016/j.jallcom.2020.155385.

[32] M. Vallet-Regí, J.M. Gonz´alez-Calbet, Calcium phosphates as substitution of bone tissues, Prog. Solid State Chem. 32 (2004) 1–31, https://doi.org/10.1016/j. progsolidstchem.2004.07.001.

[33] O. Gokcekaya, K. Ueda, T. Narushima, C. Ergun, Synthesis and characterization of Ag-containing calcium phosphates with various Ca/P ratios, Mater. Sci. Eng. C 53 (2015) 111–119, https://doi.org/10.1016/j.msec.2015.04.025.

[34] O. Gokcekaya, K. Ueda, T. Narushima, C. Ergun, Preparation of Ag-doped calcium phosphates, in: 8th pacific rim int. Congr, Adv. Mater. Process. 2013, PRICM 8 (2013).

[35] C. Ergun, T.J. Webster, R. Bizios, R.H. Doremus, Hydroxylapatite with substituted magnesium, zinc, cadmium, and yttrium. I. Structure and microstructure, J. Biomed. Mater. Res. 59 (2002) 305–311.

[36] J.C. Wurst, J.A. Nelson, Lineal intercept technique for measuring grain size in two- phase polycrystalline ceramics, J. Am. Ceram. Soc. 55 (1972) 109, https://doi.org/ 10.1111/j.1151-2916.1972.tb11224.x.

[37] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276, https://doi.org/10.1107/S0021889811038970.

[38] A. Matsugaki, G. Aramoto, T. Ninomiya, H. Sawada, S. Hata, T. Nakano, Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure, Biomaterials 37 (2015) 134–143, https://doi.org/10.1016/j.biomaterials.2014.10.025.

[39] C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K. W. Eliceiri, ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinf. 18 (2017) 529, https://doi.org/10.1186/s12859-017-1934-z.

[40] C. Ergun, Effect of Ti ion substitution on the structure of hydroxylapatite, J. Eur. Ceram. Soc. 28 (2008) 2137–2149, https://doi.org/10.1016/j. jeurceramsoc.2008.03.007.

[41] M. Jiang, J. Terra, A.M. Rossi, M.A. Morales, E.M. Baggio Saitovitch, D.E. Ellis, Fe2 +/Fe3+ substitution in hydroxyapatite: theory and experiment, Phys. Rev. B Condens. Matter 66 (2002) 2241071–22410715.

[42] K. Yoshida, H. Hyuga, N. Kondo, H. Kita, M. Sasaki, M. Mitamura, K. Hashimoto, Y. Toda, Substitution model of monovalent (Li, Na, and K), divalent (Mg), and trivalent (Al) metal ions for β-tricalcium phosphate, J. Am. Ceram. Soc. 89 (2006) 688–690, https://doi.org/10.1111/j.1551-2916.2005.00727.x.

[43] S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, S. Pina, P.M.C. Torres, J.M. F. Ferreira, Synthesis and structural characterization of strontium- and magnesium- co-substituted β-tricalcium phosphate, Acta Biomater. 6 (2010) 571–576, https:// doi.org/10.1016/j.actbio.2009.08.009.

[44] S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, J.M.F. Ferreira, Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by rietveld refinement, J. Am. Ceram. Soc. 91 (2008) 1–12, https://doi. org/10.1111/j.1551-2916.2007.02117.x.

[45] T. Kubota, A. Nakamura, K. Toyoura, K. Matsunaga, The effect of chemical potential on the thermodynamic stability of carbonate ions in hydroxyapatite, Acta Biomater. 10 (2014) 3716–3722, https://doi.org/10.1016/j.actbio.2014.05.007.

[46] K. Ohashi, S. Fujiwara, K. Mizuno, Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction, J. Biochem. 161 (2017) 245–254, https://doi.org/10.1093/jb/mvw082.

[47] C. Ergun, H. Liu, T.J. Webster, E. Olcay, S. Yilmaz, F.C. Sahin, Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher Ca/P ratios, J. Biomed. Mater. Res. A. 85 (2008) 236–241, https://doi.org/10.1002/jbm. a.31555.

[48] H. Pan, B.W. Darvell, Effect of carbonate on hydroxyapatite solubility, Cryst. Growth Des. 10 (2010) 845–850.

[49] D. Nakagawa, M. Nakamura, S. Nagai, M. Aizawa, Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their responses to immunocytes, J. Mater. Sci. Mater. Med. 31 (2020) 20, https://doi.org/10.1007/ s10856-020-6358-z.

[50] O. Gokcekaya, C. Ergun, T.J. Webster, A. Bahadir, K. Ueda, T. Narushima, T. Nakano, Effect of precursor deficiency induced Ca/P ratio on antibacterial and osteoblast adhesion properties of Ag-incorporated hydroxyapatite: reducing Ag toxicity, Materials 14 (2021), https://doi.org/10.3390/ma14123158.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る