リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the development of a novel seed production technology for cabbages using the grafting-induced flowering with radish rootstocks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the development of a novel seed production technology for cabbages using the grafting-induced flowering with radish rootstocks

Motoki, Ko 京都大学 DOI:10.14989/doctor.r13498

2022.07.25

概要

世界中で広く栽培される重要な葉菜類であるキャベツ(Brassica oleracea L. var.capitata)では、その長い幼若期間と強い低温要求性により、花成誘導に時間がかかることが育種および採種上の課題となっている。もし、花成誘導された植物において合成される花成ホルモンを、接ぎ木により移行させることによってキャベツを花成誘導できれば、キャベツの育種効率の飛躍的向上および採種体系の多様化が可能になる。
しかしキャベツにおいては接ぎ木による安定した花成誘導は未だ実現されていない。
唯一、香川(1957)がダイコン(Raphanus sativus L.)への接ぎ木により稀にキャベツを開花させることができたと報告したものの、この現象はそれ以来再現されていない。本研究は、ダイコンへの接ぎ木によるキャベツの花成誘導法を再現・確立し、その成功条件を花成ホルモンFLOWERING LOCUS T(FT)タンパク質の蓄積量から明らかにすることにより、新規採種技術の開発に向けた基盤的知見を得ることを目的とした。

第1章では、制御環境下において花成誘導した複数のキャベツおよびダイコン系統を台木として供試し、接ぎ木によるキャベツの花成誘導現象の再現を試みた。その結果、ダイコンに接ぎ木した場合にのみ一部のキャベツが花成誘導されること、さらに特定のダイコン系統を台木に用いた場合に、キャベツが高確率で花成誘導されることを見出した。遺伝子発現解析を通して、接ぎ木されたキャベツでは台木から供給されるFTに依存して花成誘導が起こることが推察され、その開花反応の違いにはダイコン台木の葉におけるFT遺伝子発現量の違いが関与することが示唆された。

第2章では接ぎ木されたキャベツの開花反応とFTタンパク質蓄積量との関連解析に向けて、ダイコンおよびキャベツのFTを検出できるペプチド抗体を開発した。組換えタンパク質のウエスタンブロット解析および免疫沈降-質量分析による特異性の確認を行うとともに、定量ウエスタンブロット解析により、開発した抗体がダイコンの葉で発現するFTを定量的に検出できることを確認した。

第3章では遺伝子型および花成誘導条件の異なる台木への接ぎ木により、異なる開花反応を示したキャベツに蓄積したFTを定量し、接ぎ木したキャベツの花成誘導の成否とFT蓄積量との関係を調査した。その結果、接ぎ木によるキャベツの花成誘導には穂木へのFTの高濃度蓄積が必要であること、また接ぎ木されたキャベツの開花反応に対してFTが量的効果をもつことを明らかにした。さらに穂木のFT蓄積量に影響する台木の要因として、FT発現量だけでなく葉面積も大きな効果をもつことを示した。

第4章では第1–3章で確立した接ぎ木による採種法の実際の育種や採種への利用に向けて、圃場試験によって、接ぎ木により得たキャベツ種子が通常の採種法で得た種子と同等の生育を示すことを確認した。

以上より、本研究は、接ぎ木によるキャベツの安定した花成誘導法を確立し、その採種技術としての有用性を示すとともに、接ぎ木による花成誘導におけるFTの量的効果とその制御に関わる台木の要因を明らかにしたものであり、キャベツだけでなく他作物の花成誘導および採種技術の開発に貢献する重要な知見を提示した。

参考文献

Abe, M., Y. Kobayashi, S. Yamamoto, Y. Daimon, A. Yamaguchi, Y. Ikeda, H. Ichinoki, M. Notaguchi,K. Goto and T. Araki. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056.

Al-Khatib, K., C. Libbey and S. Kadir. 1995. Broadleaf weed control and cabbage seed yield following herbicide application. HortScience 30:1211–1214.

Bastow, R., J. S. Mylne, C. Lister, Z. Lippman, R. A. Martienssen and C. Dean. 2004. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167.

Bock, R. 2017. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51:1–22.

Bradley, D., O. Ratcliffe, C. Vincent, R. Carpenter and E. Coen. 1997. Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83.

Bull, S. E., A. Alder, C. Barsan, M. Kohler, L. Hennig, W. Gruissem and H. Vanderschuren. 2017. FLOWERING LOCUS T triggers early and fertile flowering in glasshouse cassava (Manihot esculenta Crantz). Plants 6:22.

Chailakhyan, M. K. 1936. New facts in support of the hormonal theory of plant development. Comptes Rendus l’Académie Des Sci. l’U.R.S.S. XIII:79–83.

Chen, M., D. R. MacGregor, A. Dave, H. Florance, K. Moore, K. Paszkiewicz, N. Smirnoff, I. A. Graham and S. Penfield. 2014. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proc. Natl. Acad. Sci. U. S. A. 111:18787–18792.

Corbesier, L., C. Vincent, S. Jang, F. Fornara, Q. Fan, I. Searle, A. Giakountis, S. Farrona, L. Gissot, C. Turnbull and G. Coupland. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033.

EL-Eslamboly, A. A. S. A. and H. H. Hamed. 2021. New techniques to induce flowering and produce seeds of foreign cabbage varieties as a main step for a superior hybrids production. Int. J. Environ. 10:66– 82.

Endo, M., M. Yoshida, Y. Sasaki, K. Negishi, K. Horikawa, Y. Daimon, K. I. Kurotani, M. Notaguchi, M. Abe and T. Araki. 2018. Re-evaluation of florigen transport kinetics with separation of functions by mutations that uncouple flowering initiation and long-distance transport. Plant Cell Physiol. 59:1621– 1629.

Goto, T., M. Ishii and K. Fujiwara. 2011. Effects of seed lots and seed production time on growth, flowering and cut flower quality in Bupleurum rotundifolium L. Sci. Rep. Fac. Agric. Okayama Univ. 100:25– 29.

Guo, Y., H. Hans, J. Christian and C. Molina. 2014. Mutations in single FT- and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front. Plant Sci. 5:282.

Hagiya, K. 1949. Studies on the so-called “Home and Foreign” crops of seed of “Tokinashi” radish, a Japanese spring variety. I. On the diffeience in size of seed between the so called “Home and Foreign” crops, with special reference to the bolting behavior. J. Japanese Soc. Hortic. Sci. 18:65-70 (In Japanese with English abstract).

Hagiya, K. 1950. On the so-called “Home” and “Foreign” crops of seed of Tokinashi radish, a Japanese spring variety. II. On the effect of harvesting date of seeds, as well as of the setting position of seed within the same plant, upon the bolting behavior of the plant dev. J. Japanese Soc. Hortic. Sci. 19:61- 67 (In Japanese with English abstract).

Hagiya, K. 1951. Effect of low temperature and photoperiod on flowering of radish. Agric. Hortic. 26:673 (In Japanese).

Hamamoto, H. and Y. Yoshida. 2012. Does vernalized radish rootstock promote bolting of crucifer scion by grafting? Hort. Res. (Suppl. 2) 190 (In Japanese).

Hamner, K. C. and J. Bonner. 1938. Photoperiodism in relation to hormones as factors in floral initiation and development. Bot. Gaz. 100:388–431.

Han, Q., S. Sakaguchi, T. Wakabayashi and H. Setoguchi. 2021. Association between RsFT, RsFLC and RsCOL5 (A&B) expression and flowering regulation in Japanese wild radish. AoB Plants 13:plab039. Helliwell, C. A., C. C. Wood, M. Robertson, W. J. Peacock and E. S. Dennis. 2006. The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J. 46:183–192.

Hyun, Y., C. Vincent, V. Tilmes, S. Bergonzi, C. Kiefer, R. Richter, R. Martinez-Gallegos, E. Severing and G. Coupland. 2019. A regulatory circuit conferring varied flowering response to cold in annual and perennial plants. Science 363:409–412.

Imamura, H., K. Suto and H. Ikeda. 2009. Bolting responses of Eustoma grandiflorum (Raf.) Shinn. to chilling during seed ripening. Hort. Res. 8:41-46 (In Japanese with English summary).

Irwin, J. A., E. Soumpourou, C. Lister, J.-D. Ligthart, S. Kennedy and C. Dean. 2016. Nucleotide polymorphism affecting FLC expression underpins heading date variation in horticultural brassicas. Plant J. 87:597–605.

Itabashi, E., D. J. Shea, N. Fukino, R. Fujimoto, K. Okazaki, T. Kakizaki and T. Ohara. 2019. Comparison of cold responses for orthologs of cabbage vernalization related genes. Hort. J. 88:462–470.

Ito, H. and T. Saito. 1961. Time and temperature factors for the flower formation in cabbage. Tohoku J. Agric. Res. 12:297–316.

Jung, H., S. H. Jo, W. Y. Jung, H. J. Park, A. Lee, J. S. Moon, S. Y. Seong, J. Kim, Y. Kim and H. S. Cho. 2020. Gibberellin promotes bolting and flowering via the floral integrators RsFT and RsSOC1-1 under marginal vernalization in radish. Plants 9:594.

Jung, W. Y., H. J. Park, A. Lee, S. S. Lee, Y.-S. Kim and H. S. Cho. 2016. Identification of Flowering- Related Genes Responsible for Differences in Bolting Time between Two Radish Inbred Lines. Front. Plant Sci. 7:1–19.

Kagawa, A. 1957. Studies on the effect of low temperature induction in cabbage. Ⅱ. On the translocation of thermo-induction stimulus and the effect of defoliation upon the floral initiation of cabbage. Res. Bull. Fac. Coll. Agric. Gifu Univ. 8:43-56 (In Japanese with English abstract).

Kim, S. J., S. M. M. Hong, S. J. J. Yoo, S. Moon, H. S. S. Jung and J. H. H. Ahn. 2016. Post-translational regulation of FLOWERING LOCUS T Protein in Arabidopsis. Mol. Plant 9:308–311.

Kinoshita, Y., K. Motoki and M. Hosokawa. 2021. Characterization of a non-flowering cabbage mutant discovered 42 years ago. Hort. J. 90:374–381.

Kitamoto, N., K. Nishikawa, Y. Tanimura, S. Urushibara, T. Matsuura, S. Yokoi, Y. Takahata and S. Yui. 2017. Development of late-bolting F1 hybrids of Chinese cabbage (Brassica rapa L.) allowing early spring cultivation without heating. Euphytica 213:1–13.

Kitashiba, H. and S. Yokoi. 2017. Genes for bolting and flowering. In T. Nishio, H. Kitashiba (eds.). The Radish Genome. Springer: Cham. 151–164.

Kobayashi, H., K. Shirasawa, N. Fukino, H. Hirakawa, T. Akanuma and H. Kitashiba. 2020. Identification of genome-wide single-nucleotide polymorphisms among geographically diverse radish accessions. DNA Res. 27:dsaa001.

Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi and T. Araki. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962.

Kundariya, H., X. Yang, K. Morton, R. Sanchez, M. J. Axtell, S. F. Hutton, M. Fromm and S. A. Mackenzie. 2020. MSH1-induced heritable enhanced growth vigor through grafting is associated with the RdDM pathway in plants. Nat. Commun. 11:1–14.

Leijten, W., R. Koes, I. Roobeek and G. Frugis. 2018. Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae crop species. Plants 7:111.

Lifschitz, E., B. G. Ayre and Y. Eshed. 2014. Florigen and anti-florigen – A systemic mechanism for coordinating growth and termination in flowering plants. Front. Plant Sci. 5:465.

Lin, M. K., H. Belanger, Y. J. Lee, E. Varkonyi-Gasic, K. I. Taoka, E. Miura, B. Xoconostle-Cázares, K. Gendler, R. A. Jorgensen, B. Phinney, T. J. Lough and W. J. Lucas. 2007. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506.

Lin, S.-I., J.-G. Wang, S.-Y. Poon, C.-L. Su, S.-S. Wang and T.-J. Chiou. 2005. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol. 137:1037–1048.

Lin, Y., J. Lee, M. Tseng, C. Lee, C. Shen, C. Wang, C. Liou, L. Shuang, A. H. Paterson and K. Hwu. 2018. Subtropical adaptation of a temperate plant (Brassica oleracea var. italica) utilizes non-vernalization- responsive QTLs. Sci. Rep. 8:13609.

Lingegowda, H. and H. Andrews. 1973. Effects of seed size in cabbage and turnip on performance of seeds, seedlings and plants. Proc. Assoc. Off. Seed Anal. 63:117–125.

Liu, L., C. Liu, X. Hou, W. Xi, L. Shen, Z. Tao, Y. Wang and H. Yu. 2012. FTIP1 is an essential regulator required for florigen transport. PLoS Biol. 10:e1001313.

Michaels, S. D. and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956.

Michaels, S. D., E. Himelblau, S. Y. Kim, F. M. Schomburg and R. M. Amasino. 2005. Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137:149–156.

Miller, J. C. 1929. A study of some factors affecting seed-stalk development in cabbage. Cornell Univ. Agr. Exp. Stat. Bull. 488:1–46.

Nakanishi, T. and K. Hinata. 1975. Self-seed production by CO2 gas treatment in self-incompatible cabbage. Euphytica 24:117–120.

Navarro, C., J. A. Abelenda, E. Cruz-Oró, C. A. Cuéllar, S. Tamaki, J. Silva, K. Shimamoto and S. Prat. 2011. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119–122.

Nie, S., C. Li, Y. Wang, L. Xu, E. M. Muleke, M. Tang, X. Sun and L. Liu. 2016a. Transcriptomic analysis identifies differentially expressed genes (DEGs) associated with bolting and flowering in radish (Raphanus sativus L.). Front. Plant Sci. 7.

Nie, S., C. Li, L. Xu, Y. Wang, D. Huang, E. M. Muleke, X. Sun, Y. Xie and L. Liu. 2016b. De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering. BMC Genomics 17:1–16.

Notaguchi, M., M. Abe, T. Kimura, Y. Daimon, T. Kobayashi, A. Yamaguchi, Y. Tomita, K. Dohi, M. Mori and T. Araki. 2008. Long-distance, graft-transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Physiol. 49:1645–1658.

Nyarko, G., P. G. Alderson, J. Craigon and D. L. Sparkes. 2007. Induction and generation of flowering in cabbage plants by seed vernalisation, gibberellic acid treatment and ratooning. J. Hortic. Sci. Biotechnol. 82:346–350.

Odipio, J., B. Getu, R. D. Chauhan, T. Alicai, R. Bart, D. A. Nusinow and N. J. Taylor. 2020. Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS One 15:1–16.

Ohshima, S., M. Murata, W. Sakamoto, Y. Ogura and F. Motoyoshi. 1997. Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol. Gen. Genet. 254:186–194.

Okazaki, K., K. Sakamoto, R. Kikuchi, A. Saito, E. Togashi, Y. Kuginuki, S. Matsumoto and M. Hirai. 2007. Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 114:595–608.

van de Pol, P. A. 1972. Floral Induction, floral hormones and flowering. Meded. Landbouwhogesch. Wageningen 72:1–89.

Porri, A., S. Torti, M. Romera-Branchat and G. Coupland. 2012. Spatially distinct regulatory roles for gibberellins in the promotion of flowering of Arabidopsis under long photoperiods. Development 139:2198–2209.

Proietti, S., V. Scariot, S. De Pascale and R. Paradiso. 2022. Flowering Mechanisms and Environmental Stimuli for Flower Transition: Bases for Production Scheduling in Greenhouse Floriculture. Plants 2022, Vol. 11, Page 432 11:432.

Putterill, J. and E. Varkonyi-Gasic. 2016. FT and florigen long-distance flowering control in plants. Curr. Opin. Plant Biol. 33:77–82.

Ridge, S., P. H. Brown, V. Hecht, R. G. Driessen and J. L. Weller. 2015. The role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development. J. Exp. Bot. 66:125–135.

Romero-Calvo, I., B. Ocón, P. Martínez-Moya, M. D. Suárez, A. Zarzuelo, O. Martínez-Augustin and F. S. de Medina. 2010. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal. Biochem. 401:318–320.

Searle, I., Y. He, F. Turck, C. Vincent, F. Fornara, S. Kröber, R. A. Amasino and G. Coupland. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev. 20:898–912.

Shalit, A., A. Rozman, A. Goldshmidt, J. P. Alvarez, J. L. Bowman, Y. Eshed and E. Lifschitz. 2009. The flowering hormone florigen functions as a general systemic regulator of growth and termination. Proc. Natl. Acad. Sci. U. S. A. 106:8392–8397.

Shinohara, S. 1959. Genecological studies on the phasic development of flowering centering on the cruciferous crops, especially on the role of vernalization on ripening seeds (special issue). Tech. Bull. Shizuoka Prefect. Agr. Expt. Sta. (In Japanese with English summary).

Soares, J. M., K. C. Weber, W. Qiu, D. Stanton, L. M. Mahmoud, H. Wu, P. Huyck, J. Zale, K. Al Jasim, J. W. Grosser and M. Dutt. 2020. The vascular targeted citrus FLOWERING LOCUS T3 gene promotes non-inductive early flowering in transgenic Carrizo rootstocks and grafted juvenile scions. Sci. Rep. 10:1–18.

Song, Y. H., A. Kubota, M. S. Kwon, M. F. Covington, N. Lee, E. R. Taagen, D. Laboy Cintrón, D. Y. Hwang, R. Akiyama, S. K. Hodge, H. Huang, N. H. Nguyen, D. A. Nusinow, A. J. Millar, K. K. Shimizu and T. Imaizumi. 2018. Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nat. Plants 2018 410 4:824–835.

Suge, H. 1986. Nature of floral stimulus in Perilla as studied by grafting. Ⅰ. Method of evaluation and the movement of floral stimulus as affected by N6-Benzylaminopurine. Japanese J. Crop Sci. 53:423– 429.

Suge, H. and L. Rappaport. 1968. Role of gibberellins in stem elongation and flowering in radish. Plant Physiol 43:1208–1214.

Sunakawa, K. 1966. Studies on blooming sweet potato (1) : Growth and bloom when grafted to various stocks. Okinawa-Nougyo 5:10-14 (In Japanese).

Susila, H., S. Jurić, L. Liu, K. Gawarecka, K. S. Chung, S. Jin, S. J. Kim, Z. Nasim, G. Youn, M. C. Suh, H. Yu and J. H. Ahn. 2021. Florigen sequestration in cellular membranes modulates temperature- responsive flowering. Science 373:1137–1142.

Tamaki, S., S. Matsuo, L. W. Hann, S. Yokoi and K. Shimamoto. 2007. Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036.

Tang, M., X. Bai, J. Wang, T. Chen, X. Meng, H. Deng, C. Li and Z.-F. Xu. 2022. Efficiency of graft- transmitted JcFT for floral induction in woody perennial species of the Jatropha genus depends on transport distance. Tree Physiol. 42:189–201.

Tränkner, C., S. Lehmann, H. Hoenicka, M.-V. Hanke, M. Fladung, D. Lenhardt, F. Dunemann, A. Gau, K. Schlangen, M. Malnoy and H. Flachowsky. 2010. Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324.

Wang, J., C. J. Hopkins, J. Hou, X. Zou, C. Wang, Y. Long, S. Kurup, G. J. King and J. Meng. 2012. Promoter variation and transcript divergence in Brassicaceae lineages of FLOWERING LOCUS T. PLoS One 7.

Wang, S. S., C. G. Chang, D. L. Lin, Y. F. Yen and M. T. Wu. 2000. Studies on cabbage seed production in the lowland. Res. Bull. Tainan. Dist. Agric. Improv. Stn. 37:56–64.

Wang, W., K. Tang, H. R. Yang, P. F. Wen, P. Zhang, H. L. Wang and W. D. Huang. 2010. Distribution of resveratrol and stilbene synthase in young grape plants (Vitis vinifera L. cv. Cabernet Sauvignon) and the effect of UV-C on its accumulation. Plant Physiol. Biochem. 48:142–152.

Wenzel, S., H. Flachowsky and M. V. Hanke. 2013. The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell. Tissue Organ Cult. 115:127–137.

Wiebe, H. J. 1989. Effects of low temperature during seed development on the mother plant on subsequent bolting of chicory, lettuce and spinach. Sci. Hortic. 38:223–229.

Wu, Y., Y. Ma, M. Wang, H. Zhou, Z. Gan, R. Zeng, L. Ye, J. Zhou, J. Zhang and C. Hu. 2022. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. Hortic. Res. uhac056.

Yamagishi, H. 2017. Speciation and diversification of radish. In T. Nishio, H. Kitashiba (eds.). The Radish Genome. Springer: Cham. 11–30.

Yamagishi, N., R. Kishigami and N. Yoshikawa. 2014. Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation. Plant Biotechnol. J. 12:60–68.

Ye, J., Y. Geng, B. Zhang, H. Mao, J. Qu and N. H. Chua. 2014. The Jatropha FT ortholog is a systemic signal regulating growth and flowering time. Biotechnol. Biofuels 7.

Yoo, S. C., C. Chen, M. Rojas, Y. Daimon, B. K. Ham, T. Araki and W. J. Lucas. 2013a. Phloem long- distance delivery of FLOWERING LOCUS T (FT) to the apex. Plant J. 75:456–468.

Yoo, S. J., S. M. Hong, H. S. Jung and J. H. Ahn. 2013b. The cotyledons produce sufficient FT protein to induce flowering: evidence from cotyledon micrografting in Arabidopsis. Plant Cell Physiol. 54:119– 128.

Yoo, S. K., K. S. Chung, J. Kim, J. H. Lee, S. M. Hong, S. J. Yoo, S. Y. Yoo, J. S. Lee and J. H. Ahn. 2005. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis. Plant Physiol. 139:770–778. Zeevaart, J. A. D. 1976. Physiology of flower formation. Annu. Rev. Plant Physiol. 27:321–348. Zeevaart, J. A. D. 1958. Flower formation as studied by grafting. Meded. Landbouwhogesch. Wageningen58:1–88.

Zhang, H., D. E. Harry, C. Ma, C. Yuceer, C. Y. Hsu, V. Vikram, O. Shevchenko, E. Etherington and S. H. Strauss. 2010. Precocious flowering in trees: The FLOWERING LOCUS T gene as a research and breeding tool in Populus. J. Exp. Bot. 61:2549–2560.

Zhu, Y., S. Klasfeld, C. W. Jeong, R. Jin, K. Goto, N. Yamaguchi and D. Wagner. 2020. TERMINAL FLOWER 1-FD complex target genes and competition with FLOWERING LOCUS T. Nat. Commun. 2020 111 11:1–12.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る