リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of a novel resin cement containing anti-microbial compound CPC-Montmorillonite」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of a novel resin cement containing anti-microbial compound CPC-Montmorillonite

山本, 裕也 北海道大学

2021.03.25

概要

Objective: The aim of this study was to evaluate the mechanical property, bonding performance and anti-microbial activity of a novel resin cement containing montmorillonite modified Cetylpyridinium chloride (CPC-Mont), and to determine the optimal particle size and concentration of CPC-Mont to be lorded to the resin cement.

Materials and methods: Montmorillonite filler modified CPC with a median diameter of 30μm and 7μm were prepared, and they lorded to a resin cement at concentrations of 2, 3, 4, 5,7.5 wt.%. Mechanical property and bonding performance of the resin cements were evaluated by 3 point bending test and micro-tensile bond strength test. The amount of CPC released from the resin disks were quantified using a UV-vis recording spectrophotometer. The anti-biofilm activity was also studied using scanning electron microscope.

Results: Mechanical property and bonding performance of the resin cement decreased with lording 30μm CPC-Mont, but no reduction was observed with lording 7μm CPC-Mont. Although CPC release was decreased as the immersion period passed, 5 and 7.5 wt.% CPC-Mont resin cement inhibited biofilm formation for 30 days.

Conclusions: The lording of CPC-Mont with a median diameter of 7μm at concentrations of 5 to 7.5 wt.% to resin cement was effective in achieving continuous anti-biofilm activity while maintaining the mechanical property and bonding performance.

Keywords: Secondary caries, Biofilm, Resin cement, Montmorillonite, Cetylpyridinium chloride

この論文で使われている画像

参考文献

[1] Zaitsu T, Saito T, Kawaguchi Y. The Oral Healthcare system in Japan. Healthcare 2018; 6(3), 79-95. https://doi.org/10.3390/healthcare6030079

[2] Miura H, Tano R. Recent measures in geriatric oral health care in Japan. J Natl Inst Public Health 2019; 68(1): 8-16. https://doi.org/10.20683/jniph.68.1_8

[3] Aida J, Ando Y, Akhter R, Aoyama H, Masui M, Morita M. Reasons for permanent tooth extractions in Japan. J Epidemiol 2006; 16(5), 214-219. https://doi.org/10.2188/jea.16.214

[4] IF Angelillo, CG Nobile, M Pavia. Survey of reasons for extraction of permanent teeth in Italy. Community Dent Oral Epidemiol 1996; 24: 336-340. https://doi.org/10.1111/j.1600-0528.1996.tb00872.x

[5] G Ong, JE Yeo, S Bhole. A survey of reasons for extraction of permanent teeth in Singapore. Community Dent Oral Epidemiol 1996; 24: 124-127. https://doi.org/10.1111/j.1600-0528.1996.tb00828.x

[6] Hayes M, Da Mata C, Cole M, McKenna G, Burke F, Allen PF. Risk indicators associated with root caries in independently living older adults. J Dent 2016; 51: 8-14. https://doi.org/10.1016/j.jdent.2016.05.006

[7] Leung RL, Loesche WJ, Charbeneau GT. Effect of dycal on bacteria in deep carious lesions. J Am Dent Assoc 1980; 100(2): 193-197. https://doi.org/10.14219/jada.archive.1980.0056

[8] Brännström M, Nyborg H. Cavity treatment with a microbicidal fluoride solution: Growth of bacteria and effect on pulp. J Prosthet Dent 1973; 30(3): 303-310. https://doi.org/10.1016/0022-3913(73)90187-X

[9] Yildirm Bicer AZ, Unver S. Etiology of secondary caries in prosthodontic treatments.Dental Cariese-Diagnosis, Prevention and Management 2018, London, IntechOpen. https://dx.doi.org/10.5772/intechopen.76097

[10] Jokstad A. Secondary caries and microleakage. Dent Mater 2016; 32(1): 11-25. https://doi.org/10.1016/j.dental.2015.09.006

[11] Wingo K. A review of dental cements. J Vet Dent 2018; 35(1): 18-27. https://doi.org/10.1177/0898756418755339

[12] Aguilar Perez D, Vargas Coronado R, Cervantes Uc JM, Rodriguez Fuentes N, Aparicio C, Covarrubias C, Alvarez Perez M, Garcia Perez V, Martinez Hernandez MG, Cauich Rodriguez JV. Antibacterial activity of a glass ionomer cement doped with copper nanoparticles. Dent Mater J 2020; 39(3): 389-396.https://doi.org/10.4012/dmj.2019-046

[13] Witt J, Ramji N, Gibb R, Dunavent J, Flood J, Barnes J. Antibacterial and antiplaque effects of a novel alcohol-free oral rinse with cetylpyridinium chloride. J Contemp Dent Pract 2005; 6(1): 1-9.

[14] Herrera D, Escudero N, Pérez L, Otheo M, Cañete-Sánchez E, Pérez T, Alonso B, Serrano J, Palma JC, Sanz M, Martín C. Clinical and microbiological effects of the use of a cetylpyridinium chloride dentifrice and mouth rinse in orthodontic patients: a 3-month randomized clinical trial. Eur J Orthod 2018; 40(5): 465-474. https://doi.org/10.1093/ejo/cjx096

[15] Namba N, Yoshida Y, Nagaoka N, Takashima S, Matsuura-Yoshimoto K, Maeda H, Van Meerbeek B, Suzuki K, Takashiba S. Antibacterial effect of bactericide immobilized in resin matrix. Dent Mater 2009; 25(4): 424-430. https://doi.org/10.1016/j.dental.2008.08.012

[16] Matsuo K, Yoshihara K, Nagaoka N, Makita Y, Obika H, Okihara T, Matsukawa A,Yoshida Y, Van Meerbeek B. Rechargeble anti-microbial adhesive formulation containing cetylpyridinium chloride montmorillonite. Acta Biomater 2019; 100: 388-397. https://doi.org/10.1016/j.actbio.2019.09.045

[17] Munhoz T, Fredholm Y, Rivory P, Balvay S, Hartmann D, da Silva P, Chenal JM. Effect of nanoclay addition on physical, chemical, optical and biological properties of experimental dental resin composites. Dent Mater 2017; 33(3): 271-279. https://doi.org/10.1016/j.dental.2016.11.016

[18] LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 1999; 15: 11-29.https://doi.org/10.1016/S0169-1317(99)00017-4

[19] de Menezes LR, de Silva EO,. The use of montmorillonite clays as reinforcing fillers for dental adhesives. Mater Res 2016; 19(1): 236-242.http://dx.doi.org/10.1590/1980-5373-MR-2015-0375

[20] Pameijer CH. A review of luting agents. Int J Dent 2012 https://doi.org/10.1155/2012/752861

[21] Fathie K, Azhari CH, Muchtar A, Ahamad ZA. Effects of filler size on the mechanical properties of polymer-filled dental composites:a review of recent developments. J Phys Sci 2018; 29(1): 141-165. https://doi.org/10.21315/jps2018.29.1.10

[22] Li J. Effect of flexural strength of orthodontic resin cement on bond strength of metal brackets to enamel surfaces. Eur J Orthod 2011; 33(2): 167-173. https://doi.org/10.1093/ejo/cjq044

[23] Souza EM, De Munck J, Pongprueksa P, Van Ende A, Van Meerbeek B. Correlative analysis of cement-dentin interfaces using an interfacial fracture toughness and micro-tensile bond strength approach. Dent Mater 2016; 32(12): 1575-1585.https://doi.org/10.1016/j.dental.2016.09.031

[24] Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50(4): 358-380.

[25] Radford JR, Beighton D, Nugent Z, Jackson RJ. Effect of use of 0.05% cetylpyridinium chloride mouthwash on normal oral flora. J Dent 1997; 25(1): 35-40. https://doi.org/10.1016/S0300-5712(95)00116-6

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る