リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Computational framework for analyzing flow-induced strain on osteocyte as modulated by microenvironment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Computational framework for analyzing flow-induced strain on osteocyte as modulated by microenvironment

Kameo, Yoshitaka Ozasa, Masahiro Adachi, Taiji 京都大学 DOI:10.1016/j.jmbbm.2021.105027

2022.02

概要

Osteocytes buried in bone matrix are major mechanosensory cells that regulate bone remodeling in response to interstitial fluid flow in a lacuno-canalicular porosity. To gain an understanding of the mechanism of osteocyte mechanosensing, it is important to be able to evaluate the local strain on the osteocyte process membrane induced by the interstitial fluid flow. The microenvironment of the osteocytes, including the pericellular matrix (PCM) and canalicular ultrastructure, is a key modulator of the flow-induced strain on the osteocyte process membrane because it produces heterogeneous flow patterns in the pericellular space. To investigate the effect of changes in the microenvironment of osteocytes on the flow-induced strain, we developed a novel computational framework for analyzing the fluid–structure interaction. Computer simulations based on the proposed framework enabled evaluation of the spatial distribution of flow-induced strain on the osteocyte process membrane according to changes in the PCM density and canalicular curvature. The simulation results reveal that a decrease in PCM density and an increase in canalicular curvature, each of which is associated with aging and bone disease, have the notable effect of enhancing local flow-induced strain on the osteocyte process membrane. We believe that the proposed computational framework is a promising framework for investigating cell-specific mechanical stimuli and that it has the potential to accelerate the mechanobiological study of osteocytes by providing a deeper understanding of their mechanical environment in living bone tissue.

この論文で使われている画像

参考文献

This study was supported by the Japan Society for the Promotion of

Science (JSPS) Grants-in-Aid for Scientific Research (C) (JP19K04074)

and (A) (JP20H00659) and by the Japan Agency for Medical Research

and Development (AMED) Advanced Research and Development Pro­

grams for Medical Innovation (AMED-CREST), Elucidation of Mecha­

nobiological Mechanisms and Their Application to the Development of

Innovative Medical Instruments and Technologies (JP20gm0810003).

Adachi, T., Aonuma, Y., Tanaka, M., Hojo, M., Takano-Yamamoto, T., Kamioka, H.,

2009. Calcium response in single osteocytes to locally applied mechanical stimulus:

differences in cell process and cell body. J. Biomech. 42, 1989–1995. https://doi.

org/10.1016/j.jbiomech.2009.04.034.

Anderson, E.J., Kaliyamoorthy, S., Alexander, J.I.D., Tate, M.L.K., 2005. Nanomicroscale models of periosteocytic flow show differences in stresses imparted to cell

body and processes. Ann. Biomed. Eng. 33, 52–62. https://doi.org/10.1007/s10439005-8962-y.

Anderson, E.J., Tate, M.L.K., 2008. Idealization of pericellular fluid space geometry and

dimension results in a profound underprediction of nano-microscale stresses

10

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Y. Kameo et al.

Journal of the Mechanical Behavior of Biomedical Materials 126 (2022) 105027

Sugawara, Y., Ando, R., Kamioka, H., Ishihara, Y., Honjo, T., Kawanabe, N.,

Kurosaka, H., Takano-Yamamoto, T., Yamashiro, T., 2011. The three-dimensional

morphometry and cell-cell communication of the osteocyte network in chick and

mouse embryonic calvaria. Calcif. Tissue Int. 88, 416–424. https://doi.org/10.1007/

s00223-011-9471-7.

Sugawara, Y., Ando, R., Kamioka, H., Ishihara, Y., Murshid, S.A., Hashimoto, K.,

Kataoka, N., Tsujioka, K., Kajiya, F., Yamashiro, T., Takano-Yarnamoto, T., 2008.

The alteration of a mechanical property of bone cells during the process of changing

from osteoblasts to osteocytes. Bone 43, 19–24. https://doi.org/10.1016/j.

bone.2008.02.020.

Tiede-Lewis, L.M., Dallas, S.L., 2019. Changes in the osteocyte lacunocanalicular

network with aging. Bone 122, 101–113. https://doi.org/10.1016/j.

bone.2019.01.025.

Tsay, R.Y., Weinbaum, S., 1991. Viscous flow in a channel with periodic cross-bridging

fibers - exact solutions and brinkman approximation. J. Fluid Mech. 226, 125–148.

https://doi.org/10.1017/S0022112091002318.

Vaughan, T.J., Mullen, C.A., Verbruggen, S.W., McNamara, L.M., 2015. Bone cell

mechanosensation of fluid flow stimulation: a fluid-structure interaction model

characterising the role integrin attachments and primary cilia. Biomech. Model.

Mechanobiol. 14, 703–718. https://doi.org/10.1007/s10237-014-0631-3.

Verbruggen, S.W., Mc Garrigle, M.J., Haugh, M.G., Voisin, M.C., McNamara, L.M., 2015.

Altered mechanical environment of bone cells in an animal model of short- and longterm osteoporosis. Biophys. J. 108, 1587–1598. https://doi.org/10.1016/j.

bpj.2015.02.031.

Verbruggen, S.W., Vaughan, T.J., McNamara, L.M., 2012. Strain amplification in bone

mechanobiology: a computational investigation of the in vivo mechanics of

osteocytes. J. R. Soc. Interface 9, 2735–2744. https://doi.org/10.1098/

rsif.2012.0286.

Verbruggen, S.W., Vaughan, T.J., McNamara, L.M., 2014. Fluid flow in the osteocyte

mechanical environment: a fluid-structure interaction approach. Biomech. Model.

Mechanobiol. 13, 85–97. https://doi.org/10.1007/s10237-013-0487-y.

Verbruggen, S.W., Vaughan, T.J., McNamara, L.M., 2016. Mechanisms of osteocyte

stimulation in osteoporosis. J. Mech. Behav. Biomed. Mater. 62, 158–168. https://

doi.org/10.1016/j.jmbbm.2016.05.004.

Wang, B., Lai, X.H., Price, C., Thompson, W.R., Li, W., Quabili, T.R., Tseng, W.J., Liu, X.

S., Zhang, H., Pan, J., Kirn-Safran, C.B., Farach-Carson, M.C., Wang, L.Y., 2014.

Perlecan-containing pericellular matrix regulates solute transport and

mechanosensing within the osteocyte lacunar-canalicular system. J. Bone Miner.

Res. 29, 878–891. https://doi.org/10.1002/jbmr.2105.

Wang, L.J., You, X.L., Lotinun, S., Zhang, L.L., Wu, N., Zou, W.G., 2020. Mechanical

sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast

crosstalk. Nat. Commun. 11 https://doi.org/10.1038/s41467-019-14146-6.

Wang, Y., McNamara, L.M., Schaffler, M.B., Weinbaum, S., 2007. A model for the role of

integrins in flow induced mechanotransduction in osteocytes. Proc. Natl. Acad. Sci.

U.S.A. 104, 15941–15946. https://doi.org/10.1073/pnas.0707246104.

Weinbaum, S., Cowin, S.C., Zeng, Y., 1994. A model for the excitation of osteocytes by

mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360.

https://doi.org/10.1016/0021-9290(94)90010-8.

Yee, C.S., Schurman, C.A., White, C.R., Alliston, T., 2019. Investigating osteocytic

perilacunar/canalicular remodeling. Curr. Osteoporos. Rep. 17, 157–168. https://

doi.org/10.1007/s11914-019-00514-0.

Yokoyama, Y., Kameo, Y., Kamioka, H., Adachi, T., 2021. Image-based simulation reveals

membrane strain concentration on osteocyte processes caused by tethering elements.

Biomech. Model. Mechanobiol. 20, 2353–2360. https://doi.org/10.1007/s10237021-01511-y.

You, J., Yellowley, C.E., Donahue, H.J., Zhang, Y., Chen, Q., Jacobs, C.R., 2000.

Substrate deformation levels associated with routine physical activity are less

stimulatory to bone cells relative to loading-induced oscillatory fluid flow.

J. Biomech. Eng. 122, 387–393. https://doi.org/10.1115/1.1287161.

You, L., Cowin, S.C., Schaffler, M.B., Weinbaum, S., 2001. A model for strain

amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular

matrix. J. Biomech. 34, 1375–1386. https://doi.org/10.1016/S0021-9290(01)

00107-5.

imparted by fluid drag on osteocytes. J. Biomech. 41, 1736–1746. https://doi.org/

10.1016/j.jbiomech.2008.02.035.

Biot, M.A., 1941. General theory of three-dimensional consolidation. J. Appl. Phys. 12,

155–164. https://doi.org/10.1063/1.1712886.

Biot, M.A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid.

J. Appl. Phys. 26, 182–185. https://doi.org/10.1063/1.1721956.

Bonewald, L.F., 2011. The amazing osteocyte. J. Bone Miner. Res. 26, 229–238. https://

doi.org/10.1002/jbmr.320.

Chen, S., Doolen, G.D., 1998. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid

Mech. 30, 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329.

Cowin, S.C., 1999. Bone poroelasticity. J. Biomech. 32, 217–238. https://doi.org/

10.1016/S0021-9290(98)00161-4.

Geoghegan, I.P., Hoey, D.A., McNamara, L.M., 2019. Integrins in osteocyte biology and

mechanotransduction. Curr. Osteoporos. Rep. 17, 195–206. https://doi.org/

10.1007/s11914-019-00520-2.

Han, Y.F., Cowin, S.C., Schaffler, M.B., Weinbaum, S., 2004. Mechanotransduction and

strain amplification in osteocyte cell processes. Proc. Natl. Acad. Sci. U.S.A. 101,

16689–16694. https://doi.org/10.1073/pnas.0407429101.

Kameo, Y., Adachi, T., Hojo, M., 2008. Transient response of fluid pressure in a

poroelastic material under uniaxial cyclic loading. J. Mech. Phys. Solid. 56,

1794–1805. https://doi.org/10.1016/j.jmps.2007.11.008.

Kameo, Y., Adachi, T., Hojo, M., 2009. Fluid pressure response in poroelastic materials

subjected to cyclic loading. J. Mech. Phys. Solid. 57, 1815–1827. https://doi.org/

10.1016/j.jmps.2009.08.002.

Kameo, Y., Adachi, T., Sato, N., Hojo, M., 2010. Estimation of bone permeability

considering the morphology of lacuno-canalicular porosity. J. Mech. Behav. Biomed.

Mater. 3, 240–248. https://doi.org/10.1016/j.jmbbm.2009.10.005.

Kamioka, H., Kameo, Y., Imai, Y., Bakker, A.D., Bacabac, R.G., Yamada, N., Takaoka, A.,

Yamashiro, T., Adachi, T., Klein-Nulend, J., 2012. Microscale fluid flow analysis in a

human osteocyte canaliculus using a realistic high-resolution image-based threedimensional model. Integr. Biol. 4, 1198–1206. https://doi.org/10.1039/

c2ib20092a.

Kamioka, H., Murshid, S.A., Ishihara, Y., Kajimura, N., Hasegawa, T., Ando, R.,

Sugawara, Y., Yamashiro, T., Takaoka, A., Takano-Yamamoto, T., 2009. A method

for observing silver-stained osteocytes in situ in 3-um sections using ultra-high

voltage electron microscopy tomography. Microsc. Microanal. 15, 377–383. https://

doi.org/10.1017/s1431927609990420.

Knothe Tate, M.L., Adamson, J.R., Tami, A.E., Bauer, T.W., 2004. The osteocyte. Int. J.

Biochem. Cell Biol. 36, 1–8. https://doi.org/10.1016/s1357-2725(03)00241-3.

Lai, X.H., Price, C., Modla, S., Thompson, W.R., Caplan, J., Kirn-Safran, C.B., Wang, L.Y.,

2015. The dependences of osteocyte network on bone compartment, age, and

disease. Bone Res. 3 https://doi.org/10.1038/boneres.2015.9.

Peskin, C.S., 2002. The immersed boundary method. Acta Numer. 11, 479–517. https://

doi.org/10.1017/S0962492902000077.

Price, C., Zhou, X., Li, W., Wang, L., 2011. Real-time measurement of solute transport

within the lacunar-canalicular system of mechanically loaded bone: direct evidence

for load-induced fluid flow. J. Bone Miner. Res. 26, 277–285. https://doi.org/

10.1002/jbmr.211.

Qin, L., Liu, W., Cao, H.L., Xiao, G.Z., 2020. Molecular mechanosensors in osteocytes.

Bone Res. 8 https://doi.org/10.1038/s41413-020-0099-y.

Sasaki, F., Hayashi, M., Mouri, Y., Nakamura, S., Adachi, T., Nakashima, T., 2020.

Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in

osteocytes. Biochem. Biophys. Res. Commun. 521, 806–813. https://doi.org/

10.1016/j.bbrc.2019.10.174.

Schurman, C.A., Verbruggen, S.W., Alliston, T., 2021. Disrupted osteocyte connectivity

and pericellular fluid flow in bone with aging and defective TGF-beta signaling. Proc.

Natl. Acad. Sci. U.S.A. 118 https://doi.org/10.1073/pnas.2023999118.

Skalak, R., Tozeren, A., Zarda, R.P., Chien, S., 1973. Strain energy function of red bloodcell membranes. Biophys. J. 13, 245–280. https://doi.org/10.1016/s0006-3495(73)

85983-1.

Smit, T.H., Huyghe, J.M., Cowin, S.C., 2002. Estimation of the poroelastic parameters of

cortical bone. J. Biomech. 35, 829–835. https://doi.org/10.1016/S0021-9290(02)

00021-0.

11

...

参考文献をもっと見る